

Matthias Himmelmann

University of Potsdam, Berlin Mathematical School himmelmann1@uni-potsdam.de

Exploring the Homogeneity of Disordered Minimal Surfaces[†]

1. Hilbert's Embedding Theorem

2. Homogeneity Measures for Surfaces

For a surface \mathcal{M} , denote the average Gaussian curvature by $\langle K \rangle$ and the Gaussian curvature variance by $\sigma = \sqrt{\langle K^2 \rangle - \langle K \rangle^2}$. Then, the *fluctuation of Gaussian curvature*² is given by

Hilbert's Embedding Theorem states that no complete regular isometric immersion of the hyperbolic plane \mathbb{H}^2 (a) into \mathbb{R}^3 exists. Daina Taimina's crocheted pseudosphere¹ (b) and the Gyroid (c) weaken this theorem's assumption by containing geometric singularities or Gaussian curvature fluctuations.

4. Topology-Stabilized Curvature Optimization

 $2R_1$

Conversely, we define the *isotropy index*³ of the surface, measuring the variations of the unit normal field n, as

 $\frac{\sigma^2}{\langle K \rangle^2} = \frac{\langle K^2 \rangle - \langle K \rangle^2}{\langle K \rangle^2} = A(\mathcal{M}) \cdot \frac{\int_{\mathcal{M}} K^2 dA}{\left(\int_{\mathcal{M}} K dA\right)^2} - 1.$

$$\beta_1^{0,2}(\mathcal{M}) = \left| \frac{\lambda_3(W_1^{0,2}(\mathcal{M}))}{\lambda_1(W_1^{0,2}(\mathcal{M}))} \right| \text{ for } W_1^{0,2}(\mathcal{M}) = \frac{1}{3} \int_{\mathcal{M}} n \otimes n \, dA$$

with the largest and smallest eigenvalues λ_1 and λ_3 , respectively. Both quantities are dimensionless⁴.

3. Amorphous Diamond Minimal Surface

By applying the Wooton-Winer-Weaire algorithm⁵ to the cubic Diamond, we are able to generate an amorphous Diamond net. It can

There exists a critical wireframe radius R_c below which the catenoid "pinches off" (a-b), wanting to attain the Goldschmidt solution. We observed this behavior in our experiments as well (c).

 $2R_0$

To prevent channel collapse and to avoid local minima, we propose a new objective function for use in the Surface Evolver⁶:

$$E_{\alpha}(\mathcal{M}) = \int_{\mathcal{M}} H^2 dA + \alpha \cdot \int_{\mathcal{M}} K^2 dA$$

with $\alpha = \min \left\{ \alpha', w \cdot \alpha' \cdot \frac{\int_{\mathcal{M}} H^2 dA}{\int_{\mathcal{M}} K^2 dA} \right\}$

for the previous elastic modulus α' and damping factor w > 0.

be tubified to create an initial configuration for curvature optimization algorithms of surface meshes.

5. Superior Uniformity of the Gyroid

We sample 5 amorphous Diamond surfaces in the sizes $\chi = -432$ (triangle), $\chi = -2000$ (5-star) and $\chi = -8192$ (8-star), normalizing them to $\langle K \rangle = -1$. From these surfaces, we cut out random cubical subsamples with Euler characteristic $\chi = -16$ (green) and $\chi = 2^3 \cdot (-16)$ (blue). None of the amorphous minimal surfaces come close in curvature uniformity to the cubic Gyroid. In fact, we find that the Gyroid is particularly good at associating a minimal amount of its surface area to flat points and highcurvature regions.

[†]This project is joint work with M.C. Pedersen, M.E. Evans, M.A. Klatt, Philipp Schönhöfer, G.E. Schröder-Turk.
¹ Henderson and Taimina: Crocheting the Hyperbolic Plane. The Mathematical Intelligencer 23 (2009).
² Schröder-Turk, Fogden and Hyde: Bicontinuous Geometries and Mol. Self-Assembly. Euro. Phys. J. B 54 (2006).
³ Schröder-Turk et al.: Minkowski Tensors of Anisotropic Spatial Structure. New J. Phys. 15.8 (2013).
⁴ Himmelmann: Optimization in Geometric Materials. PhD Thesis, University of Potsdam (2024).
⁵ Wooten, Winer and Weaire: Computer Gen. of Struct. Models of Amorphous Si and Ge. Phys. Rev. Let. 54 (1985).
⁶ Barkema and Mousseau: High-Quality Continuous Random Networks. Physical Review B 62 (1999).
⁷ Brakke: The Surface Evolver. Experimental Mathematics 1.2 (1992).

