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Exploring the Homogeneity of Disordered Minimal Surfaces†

1. Hilbert’s Embedding Theorem

Hilbert’s Embedding Theorem states that no complete regular isometric immer-

sion of the hyperbolic plane H
2 (a) into R

3 exists. Daina Taimiņa’s crocheted

pseudosphere1 (b) and the Gyroid (c) weaken this theorem’s assumption by con-

taining geometric singularities or Gaussian curvature fluctuations.

4. Topology-Stabilized Curvature Optimization

There exists a critical wireframe radius Rc below which the catenoid “pinches off”

(a-b), wanting to attain the Goldschmidt solution. We observed this behavior in

our experiments as well (c).

To prevent channel collapse and to avoid local minima, we propose a new objec-

tive function for use in the Surface Evolver6:
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for the previous elastic modulus α′ and damping factor w > 0.
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2. Homogeneity Measures for Surfaces

For a surface M, denote the average Gaussian curvature by ïKð and the Gaus-

sian curvature variance by σ =
√

ïK2ð − ïKð2. Then, the fluctuation of Gaus-

sian curvature2 is given by
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− 1.

Conversely, we define the isotropy index3 of the surface, measuring the variations

of the unit normal field n, as
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with the largest and smallest eigenvalues λ1 and λ3, respectively. Both quantities

are dimensionless4.

3. Amorphous Diamond Minimal Surface

By applying the Wooton-Winer-

Weaire algorithm5 to the cubic

Diamond, we are able to generate

an amorphous Diamond net. It can

be tubified to create an initial con-

figuration for curvature optimization

algorithms of surface meshes.

5. Superior Uniformity of the Gyroid

We sample 5 amorphous Diamond

surfaces in the sizes χ = −432

(triangle), χ = −2000 (5-star) and

χ = −8192 (8-star), normalizing

them to ïKð = −1. From these

surfaces, we cut out random cu-

bical subsamples with Euler char-

acteristic χ = −16 (green) and

χ = 23 · (−16) (blue). None of the

amorphous minimal surfaces come

close in curvature uniformity to the

cubic Gyroid. In fact, we find that

the Gyroid is particularly good at

associating a minimal amount of its

surface area to flat points and high-

curvature regions.


