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Exploring the Homogeneity of Disordered Minimal Surfaces?

1. Hilbert's Embedding Theorem ‘ @ ‘

Hilbert's Embedding Theorem states that no complete regular isometric immer-
- sion of the hyperbolic plane H? (a) into R? exists. Daina Taimina’s crocheted
\ pseudospherel (b) and the Gyroid (c) weaken this theorem’s assumption by con-
taining geometric singularities or Gaussian curvature fluctuations.

.
4. Topology-SfabiIize Curvature Optimization |
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There exists a critical wireframe radius R, below which the catenoid “pinches off
(a-b), wanting to attain the Goldschmidt solution. We observed this behavior in
our experiments as well (c).

To prevent channel collapse and to avoid local minima, we propose a new objec-
tive function for use in the Surface Evolver®:

Ey(M) = / H?dA + oc-/ K?dA
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for the previous elastic modulus &’ and damping factor w > 0.
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2. Homogeneity Measures for Surfaces

»

For a surface M, denote the average Gaussian curvature by (K) and the Gaus-

\

sian curvature?® is given by
o> _ (K% — (K)?
(K)*>  (K)?

of the unit normal field n, as

02(Aq) — A3 (W72 (M)

A (WP (M)

are dimensionless?.

for Wy”*(M) :5/ n®n dA
M

’ sian curvature variance by ¢ = /(K2) — (K)2. Then, the fluctuation of Gaus-

= A(M)-

Conversely, we define the isotropy index? of the surface, measuring the variations

with the largest and smallest eigenvalues A1 and A3, respectively. Both quantities
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@ 5. Superior niformity of the Gyroid

We sample 5 amorphous Diamond
surfaces in the sizes x = —432
(triangle), x = —2000 (5-star) and
x = —8192 (8-star), normalizing
them to (K) = —1. From these
surfaces, we cut out random cu-
bical subsamples with Euler char-
acteristic x = —16 (green) and
x = 23.(—16) (blue). None of the
amorphous minimal surfaces come
close in curvature uniformity to the
cubic Gyroid. In fact, we find that
the Gyroid is particularly good at
associating a minimal amount of its
surface area to flat points and high-
curvature regions.

By applying the Wooton-Winer-
Weaire algorithm® to the cubic
Diamond, we are able to generate
an amorphous Diamond net. It can
be tubified to create an initial con-
figuration for curvature optimization
algorithms of surface meshes.
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