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Exploring the Homogeneity of Disordered Minimal Surfaces?
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2. Homogeneity Measures for Surfaces &4

For a surface M, denote the average Gaussian curvature by (K) and the Gaus-
sian curvature variance by ¢ = /(K2) — (K)2. Then, the fluctuation of Gaus-
sian curvature?® is given by
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Conversely, we define the isotropy index? of the surface, measuring the variations
of the unit normal field n, as
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A (Wy2(M))
with the largest and smallest eigenvalues A1 and A3, respectively. Both quantities

are dimensionless?.

1. Hilbert's Embedding Theorem
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Hilbert's Embedding Theorem states that no complete regular isometric immer-
\ sion of the hyperbolic plane H? (a) into R? exists. Daina Taimina’s crocheted
' pseudospherel (b) and the Gyroid (c) weaken this theorem’s assumption by con-
taining geometric singularities or Gaussian curvature fluctuations.
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4. Topology-Stabilized Curvature Optimization
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3. Amorphous Diamond Minimal S:urface

By applying the Wooton-Winer-

m 4 Y ® « Weaire algorithm® to the cubic
< Diamond, we are able to generate
g .. _ > an amorphous Diamond net. It can
2 o be tubified to create an initial con-
There exists a critical wireframe radius R, below which the catenoid “pinches off”

. - &&5’ figuration for curvature optimization
LRGN algorithms of surface meshes.
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(a-b), wanting to attain the Goldschmidt solution. We observed this behavior in
our experiments as well (c).
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To prevent channel collapse and to avoid local minima, we propose a new objec-
tive function for use in the Surface Evolver®:

E = H*°dA + a- | K?dA - - - -
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*This project is joint work with M.C. Pedersen, M.E. Evans, M.A. Klatt, PW.A. Schénhéfer, G.E. Schroder-Turk. é ‘
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