
Generalized Principal Component Analysis for

Algebraic Varieties

Approaching a Robust Method for Learning Vanishing Ideals

Matthias Himmelmann

Matriculation number: 4853871

Master's thesis
presented for gaining the degree

Master of Science in Mathematics

Supervisors: Prof. Dr. Bernd Sturmfels and

Prof. Dr. Christian Haase

Advisor: M.Sc. Sascha Timme

Department of Mathematics and Computer Science

Free University of Berlin

December 30, 2020

Table of Contents

1 Introduction 1

2 Algebro-Geometric Basics 3

3 Generalized Principal Component Analysis 7

3.1 The Noise-Free Case . 7

3.2 Recursive GPCA . 10

3.3 Noisy Samples . 11

4 Learning Equations of Algebraic Varieties 17

4.1 Presentation of the Basic Method . 17

4.2 Choosing a Suitable Error Function . 19

4.3 Transferring GPCA to Arbitrary Varieties . 20

4.4 Variations of the Algorithm . 24

4.5 Combatting the Current Over�tting . 27

4.6 Comparison of the Presented Methods . 29

4.7 Limitations of the Algorithm LearnVanishingIdeal 34

5 The Cayley-Bacharach Theorem 37

6 Conclusion and Future Work 42

6.1 Conclusion . 42

6.2 Future Work . 42

7 References 46

1 Introduction

For the past centuries, an important aspect in applied mathematics has been the interpolation of
n+ 1 pairs of complex numbers by a univariate polynomial. Numerous famous mathematicians
such as Horner, Gauÿ, Lagrange and Newton worked on related problems. They have found out
that n + 1 distinct numbers with corresponding grid points can be perfectly approximated. A
univariate polynomial of degree n is capable of attaining these numbers at the grid points, as
can be seen in Figure 1.

Figure 1: Interpolation of 4 points in the plane by f(x) = x3 − x2 − x+ 0.5.

However, in real-life applications we regularly deal with many noisy data points. The problem's
condition number can make it infeasible to �nd a polynomial of degree n that represents the data
well. Plenty statistical literature deals with solving this issue that is also known as over�tting.
It corresponds to using more parameters than necessary to approximate the data.

In more recent years, e�ort was made to generalize interpolation to multivariate polynomials.
The Buchberger-Möller algorithm (cf. Möller and Buchberger [27]) computes the ideal of all
polynomials vanishing on the sample points and has proven to be reliable in exact arithmetics
(cf. Abbott et al. [1]). Extending this method to noisy data (cf. Heldt et al. [22]), the zero-
dimensionality of the data points' ideal remains a drawback.

A di�erent approach is given by Breiding et al. [5]. They use a multivariate Vandermonde ma-
trix to calculate generators for the algebraic variety's vanishing ideal from point samples, truly
generalizing interpolation. Indeed, the Vandermonde matrix has often been applied in numerical
analysis, calculating polynomials vanishing on a set of samples (cf. Olver [28]). The fundamental
di�erence to the Buchberger-Möller algorithm is calculating polynomials that approximate the
topological and geometric structure of the data, other than �nding all polynomials vanishing on
the data points.

Imagine we are given 66 point samples as displayed in Figure 2. After visualizing the data, one
can guess that these samples belong to a planar cubic. With this information, we try to calculate
the equation that generated these points using a vector in the kernel of the multivariate Van-
dermonde matrix. In this case, the equation we are looking for is y2 − x3 + x = 0. Nonetheless,
there is an issue: The multivariate Vandermonde matrix is ill-conditioned (cf. Pan [29]), making
it impractical to use this method for complex, con�uent and particularly noisy data.

Due to Ma et al. [24], a noise-resistent method for learning subspace arrangements, i.e. unions

1

Figure 2: 66 Samples from the elliptic curve y2 − x3 + x = 0.

of linear spaces, is available. It involves the use of algebro-geometric techniques, since subspace
arrangements can be described by the vanishing set of polynomial equations. We will make use of
these ideas to generalize the previously proposed methods to arbitrary algebraic varieties. After
introducing concepts from algebraic geometry in Chapter 2, the generalized principal component
analysis (cf. Vidal et al. [35]) will be examined in Chapter 3. The initially strong assumptions
about the underlying subspaces' properties will be mitigated in the process. The result will be
a robust algorithm for learning subspace arrangements.

Similarly, for learning equations from arbitrary algebraic varieties, in Chapter 4 we initially as-
sume noise-free data. A priori knowledge about the codimension of the variety and the maximal
occuring degree among the vanishing ideal's generators is expected. For quantifying, how well
the proposed algorithms perform compared to similar methods, suitable error functions are dis-
cussed. After having identi�ed existing issues of the method FindEquations (cf. Breiding et
al. [5]), a di�erent algorithm for learning polynomial equations less prone to perturbations will
be presented. As a performance measure, we can exploit the error functions to detect potential
improvements, enabling us to present a variation of the method with higher accuracy. Prior to
conducting experiments with di�erent algebraic varieties, the issue of over�tting will be dealt
with. Adjusting the algorithm reduces the impact of high variance.

In Chapter 5, the Cayley-Bacharach theorem imposes conditions on degree 3 curves passing
through points coming from the intersection of two cubics. It is demonstrated that our method
is capable of abiding by these rules. Conclusively, an outlook for future work will be given.
Statistical learning theory will be the natural next step in the algorithm's development. It is
conceivable that a stopping criterion involving regularization with respect to the complexity of
the search space and the degree of the variety will allow our algorithm to run without prior
knowledge.

2

2 Algebro-Geometric Basics

In this thesis, rudimentary knowledge about commutative algebra is assumed. Especially, poly-
nomial rings and ideals are important tools, as summarized in Cox-Little-O'Shea [10]. Let us
begin by introducing useful concepts from algebraic geometry. First and foremost, it is funda-
mental to understand what an algebraic variety is. We recall the de�nition from Michaªek and
Sturmfels [25, p. 19]:

De�nition 2.1. Let k be a �eld, let k[x1, . . . , xD] be the polynomial ring over k in D variables
and let S ⊂ k[x1, . . . , xD] be a family of polynomials. The variety or vanishing locus of these
polynomials is de�ned to be

V(S) = {p = (p1, . . . , pD) ∈ kD : f(p) = 0 ∀f ∈ S}.

Given any subset W ⊂ kD, we can de�ne the vanishing ideal of W by

I(W) = {f ∈ k[x1, . . . , xD] : f(p) = 0 ∀p ∈W}.

Many textbooks require irreducibility for an algebraic variety, i.e. it cannot be written as the
union of two properly contained, non-trivial varieties. The concept that was introduced in
De�nition 2.1 is called an algebraic set there. Any algebraic set can be decomposed into the
union of algebraic varieties and irreducible algebraic sets correspond to vanishing ideals that
are prime. For a proof of the latter, compare Proposition 2.3 in Michaªek and Sturmfels [25,
p. 20]. In this thesis, we will use the term algebraic variety for an algebraic set, as in the applied
literature this de�nition is more prevalent.

If two polynomials f1 and f2 vanish on W ⊂ kD, so do their sum and products with arbitrary
elements of the underlying ring. Hence, V(S) = V(〈S〉) where 〈S〉 is the ideal generated by
S. According to Hilbert's basis theorem (cf. Cox et al. [10, p. 76]), the ring k[x1, . . . , xD] is
Noetherian, so the inputs of the operator V are �nitely generated ideals. Furthermore, the ideal
I(W) is radical which can be seen in the following way. If z ∈ W and f(z)m = 0, it also holds
that f(z) = 0, as k is a �eld. Since z is chosen arbitrarily, f ∈ I(W) and the ideal is radical.
The restriction of the operators V and I is further justi�ed by the following remark.

Remark 2.2. Let k be an algebraically closed �eld. Then there is a 1-to-1 correspondence between
the set of all varieties in kD and the set of all radical ideals in k[x1, . . . , xD] given by the operators
V and I respectively. This fact is also known as Hilbert's Nullstellensatz. For a proof consult for
example Michaªek and Sturmfels [25, pp. 90-91].

Considering the �elds k = R and k = C, we want to intersect a variety V ⊂ CD with RD,
especially when D ≤ 3. As a consequence, we are able to visualize the vanishing set. Later
on, intersecting and taking the union of varieties will be useful. Thus, we want to endow kD

with additional structure, namely a topology. The Zariski topology on kD is de�ned by the
algebraic varieties as closed sets, which is proven by the following proposition that uses aggregated
statements from Gathmann [18, pp. 14-15].

Proposition 2.3. The following properties hold:

1. The operators V and I reverse inclusions.

2. Let Ij for j ∈ J be a family of ideals in k[x1, . . . , xD]. It holds that

V(〈
⋃
j∈J

Ij〉) = V(
∑
j∈J

Ij) =
⋂
j∈J
V(Ij).

3

3. If I1, I2 ⊂ k[x1, . . . , xD] are ideals, then

V(I1 ∩ I2) = V(I1 · I2) = V(I1) ∪ V(I2).

Proof. In proving the statements, De�nition 2.1 is useful.

1. For the operator V, let I1 ⊂ I2 be ideals in k[x1, . . . , xD] and let z ∈ V(I2). Therefore,
any f ∈ I2 satis�es f(z) = 0 and g(z) = 0 for each g ∈ I1, because I1 ⊂ I2, implying that
z ∈ V(I1). Ultimately, V(I1) ⊃ V(I2).

For I, let Z1 ⊂ Z2 be arbitrary sets in kD. Choose any f ∈ I(Z2). By de�nition, f(z) = 0
for each z ∈ Z2. As Z1 ⊂ Z2, this yields that f ∈ I(Z1). Thus, I(Z1) ⊃ I(Z2) follows.

2. Since V(
⋃
j∈J Ij) ⊂ V(Ij) for each j ∈ J and V(

∑
j∈J Ij) ⊂ V(Ij) by Proposition 2.2.1 as

0 ∈ Ij for each j ∈ J , one has

V(〈
⋃
j∈J

Ij〉), V(
∑
j∈J

Ij) ⊂
⋂
j∈J
V(Ij).

For the other inclusion, let p ∈
⋂
j∈J V(Ij). This implies that for any j ∈ J , each f ∈ Ij

satis�es f(p) = 0. Equivalently, any f ∈
⋃
j∈J Ij vanishes on p, which proves one part of

the claim. Recall that
∑

j∈J Ij consists of �nite sums of the form
∑

j∈J fj with fj ∈ Ij .
Since fj(p) = 0 for each fj in Ij , the sum of such polynomials also vanishes on p.

3. On the one hand, if p ∈ V(I1) ∪ V(I2), then f(p) = 0 for all f ∈ I1 or g(p) = 0 for all
g ∈ I2. In any case, h(p) = 0 for all h ∈ I1 ∩ I2 and (f · g)(p) = 0, implying that

V(I1 ∩ I2), V(I1 · I2) ⊃ V(I1) ∪ V(I2).

On the other hand, let p /∈ V(I1) ∪ V(I2), so there exists a polynomial f in I1 and a
polynomial g in I2 that do not vanish on p. As a consequence, the product fg does not
vanish on p, because k contains no zero divisors. Therefore, V(I1 · I2) = V(I1)∪V(I2). By
Proposition 2.2.1, one has

I1 · I2 ⊂ I1 ∩ I2 ⊂ I1, I2 ⇒ V(I1 · I2) ⊃ V(I1 ∩ I2) ⊃ V(I1), V(I2).

Having already shown that V(I1 · I2) and V(I1) ∪ V(I2) coincide, the above containment
yields that V(I1) ∪ V(I2) = V(I1 ∩ I2).

Parts 2 and 3 of the above proposition prove that �nite unions and arbitrary intersections of
closed sets are again closed. Furthermore, V(0) = kD and V(1) = ∅, so the Zariski topology is
indeed a topology.

There is another notion of varieties in projective space. To distinguish both de�nitions, we call
varieties from De�nition 2.1 a�ne varieties. Contrary to a�ne space kD, the D-dimensional
projective space PDk ecompasses points in kD+1 \ {0} with the equivalence relation a ∼ λa for
λ ∈ k\{0} and a ∈ kD+1. Let [a0 : · · · : aD] denote a projective point to emphasize the di�erence
between points in a�ne and projective space.

De�nition 2.4. A projective variety is an algebraic set in PDk of the form

V(S) = {a = [a0 : · · · : aD] ∈ PDk : f(a) = 0 for f ∈ S}

for a family of homogeneous polynomials S ⊂ k[x0, . . . , xD].

4

The polynomials' homogeneity is necessary, as otherwise De�nition 2.4 is not well-de�ned. In
PDk , the equivalence relation a = λa for each λ ∈ k \ {0} and any a ∈ PDk applies. Conversely,
the evaluation of an arbitrary polynomial f in a point a ∈ PDk depends on the scaling. As a
consequence, while a polynomial f vanishes on λa for some λ ∈ k \ {0}, possibly it does not
vanish on a. An example is x− 2.

Homogeneous polynomials of degree n have the desireable property that

f(λa0, . . . , λaD) = λnf(a0, . . . , aD),

implying that f vanishes on any representative of [a0 : · · · : aD] ∈ PDk if and only if it vanishes
on some representative. Now, as there is an inclusion from kD to PDk via any of the standard
a�ne charts {zi 6= 0} of PDk , we can embed any a�ne variety V into PDk . However, it might
not be a projective variety, so we consider its projective closure V , de�ned by the homogeniza-
tion of all polynomials in I(V). We denote the homogenization of an ideal I by Ih, implying
V = V((I(V))h) ⊂ PDk .

As an example, let us homogenize the polynomial f = x2
1 + x1 + x2 − 1 ∈ C[x1, x2]. Its ho-

mogenization lives inside the coordinate ring C[x0, x1, x2] of P2
C. As the total degree of f is 2,

every term in its homogenization needs to have degree 2. By multiplying powers of x0 whenever
necessary, f becomes fh = x2

1 + x0x1 + x0x2 − x2
0. The inverse operation is given by selecting

an a�ne chart in P2
C, for example {z0 6= 0 : [z0 : z1 : z2] ∈ P2

C}. Subsequently, the cor-
responding variable in the coordinate ring C[x0, x1, x2] is mapped to 1, so x0 7→ 1. Choosing
the same a�ne chart the polynomial f lives in returns the original polynomial. For instance,
f(x1, . . . , xD) = fh(1, x1, . . . , xD).

Remark 2.5. It is not su�cient to homogenize only the generators of an ideal. For example,
every generator in I = 〈x − z2, y − z2〉 has total degree 2. However, x − y ∈ Ih because x −
y ∈ I. Nevertheless, x − y /∈ J = 〈ωx − z2, ωy − z2〉, so J (Ih. Selecting elements of I,
whose homogeneization generates Ih is a problem. The reduced Gröbner basis of I is a family
of polynomials G that satis�es 〈Gh〉 = Ih, solving this issue (cf. Michaªek and Sturmfels [25,
pp. 6-10]).

After choosing an embedding, important invariants of an algebraic variety are its dimension and
degree. This thesis relies on a de�nition from Hartshorne [21, p. 5], because a vector space as a
special case gives a good intuition for it.

De�nition 2.6 (Dimension and Degree). Let V be an algebraic variety. V 's dimension is de�ned
by the maximum length d of chains V0 (· · · (Vd, comprising irreducible, non-empty subvarieties

Vi of V . Allowing k
D
as domain, we calculate the vanishing set of I(V) in its algebraically closed

ambient space k
D
. Let L be an a�ne subspace of dimension D − dim(V) in general position.

The degree of V is de�ned as the amount of points in V ∩ L ⊂ PD
k
.

The notion of degree does not distinguish between the varieties V(x) and V(x2) viewed in C1.
Only the radical of the vanishing ideal is considered. Intuitively, in the latter there is a double
point in 0. The rich theory of schemes addresses this behavior (cf. Hartshorne [21, �II]).

Example 2.7. Consider the union of a line and a plane in C3 given by the vanishing set of the
ideal 〈x1x3, x2x3〉. In the plane, we can �nd the (maximal) chain of prime ideals

{0, 0, 0} = V(x1, x2, x3) (V(x1, x3) (V(x3).

The only irreducible subvarieties of the line are the points. Therefore, the dimension of this
variety is 2. For the degree, a generic line meets V(x1, x2) in a point in P3

C that corresponds to

5

∞ with probability 1. Choosing the embedding

ι : C3 ↪→ P3
C , (a1, a2, a3) 7→ [a1 : a2 : a3 : 1],

this point of intersection corresponds to [0 : 0 : 1 : c] for some c ∈ C or [0 : 0 : 0 : 1]. Consequently,
the degree of V(x1x3, x2x3) is 2, as a generic a�ne line intersects a plane in exactly 1 point.

This paves the way for a famous theorem about the number of intersection points of two plane
curves. The following generalization to hypersurfaces does not involve counting multiplicities of
the intersections and consequently avoids a scheme-theoretic language.

Theorem 2.8 (Bézout's Theorem). Let V(f1), . . . ,V(fm) ⊂ PD
k

be irreducible, non-trivial hy-
persurfaces in relative general position and let m ≤ D. Then, for the projective variety V =
V(f1, . . . , fm) it holds that

dim(V) = D −m and deg(V) =
m∏
i=1

deg(fi)

where fi is the generator of I(V(fi)) for i ∈ {1, . . . ,m}. Omitting the assumption that the
varieties are irreducible, lie in relative general position and that fi generates I(V(fi)), the Bézout
bound yields an upper bound on V 's degree:

deg(V) ≤
m∏
i=1

deg(fi).

Proof. A proof of Bézout's theorem can be found in Shafarevich [34, �IV.2]. By Krull's principal
ideal theorem, dim(V) ≥ D − m. Equality holds, because each fi is not a zero divisor in the
ring k[x0, . . . , xD]/〈f1, . . . , fi−1〉 by the relative generality of the hypersurfaces (cf. Michaªek and
Sturmfels [25, p. 26]).

The Bézout bound holds in this generality, because we can decompose V into its irreducible
components and apply the �rst part of the theorem to each combination. However, intersection
points with higher multiplicity are possible, because 〈fi〉 is not necessarily a prime ideal and
the hypersurfaces are not irreducible. Also, nontrivial subvarieties possibly coincide, since the
hypersurfaces do not lie in relative general position. Therefore, only an inequality is achievable.

6

3 Generalized Principal Component Analysis

In this chapter, we shift to a data-scienti�c viewpoint. Assume we are given N samples from the
union of several linear spaces. The segmentation problem deals with assigning each of the sample
points to a corresponding linear space. In doing so, the samples are partitioned. Our ultimate
goal is to learn the generating equations of an algebraic variety. Choosing the intermediate step
of treating subspace arrangements �rst, will prove useful in the development of an appropriate
method. We will soon see that subspace arrangements are varieties as well.

The generalized principal component analysis, thoroughly laid out in both Ma et al. [24] and
Vidal et al. [35], relies on algebro-geometric techniques to solve the aforementioned segmentation
problem. In the presence of noise, statistical techniques help to �nd a relatively close arrangement
of subspaces. We approach this in three steps, making di�erent assumptions at each one:

3.1 First, we assume that our data points are free of disturbances and that we know the amount
of occuring linear spaces and their corresponding dimensions. The algorithm generalized
principal component analysis (GPCA) is developed in the process.

3.2 Afterwards, we relax the conditions of having a priori knowledge about the subspaces; the
method recursive GPCA emerges.

3.3 Finally, we assume that our samples are corrupted with noise. Here, we once again assume
that we know the number and dimensions of the linear spaces. Arguably, this is the major
achievement in the line of GPCA methods.

This step-by-step program paves the way for a more general method similar to GPCA that works
for arbitrary algebraic varieties.

3.1 The Noise-Free Case

Fix a �eld k. As mentioned earlier, we want to use k = R or k = C. Let us denote by kD

the D-dimensional ambient space. According to Ma et al. [24], this enables us to formulate the
following de�nition:

De�nition 3.1. A subspace arrangement is de�ned to be A = V1 ∪ · · · ∪ Vn ⊆ kD for linear
subspaces Vi ⊆ kD. The dimension of the subspaces is labeled by di = dimVi and the codimension
by ci = D − di respectively. For S ⊆ {1, . . . , n}, let us denote by VS =

⋂
s∈S Vs the intersection

over all indices in S. We call the dimension of this intersection dS and the codimension cS.
Finally, we call A transversal, if for any choice of index set S ⊆ {1, . . . , n} the equality cS =
min(D,

∑
i∈S ci) holds.

Taking into account Proposition 2.3 and since any linear space is the vanishing set of linear forms
with ai,j ∈ kD and ci ≤ D, any subspace arrangement is an algebraic variety:

A = V1 ∪ · · · ∪ Vn = V (a1,1 · x, . . . , a1,c1 · x) ∪ · · · ∪ V (an,1 · x, . . . , an,cn · x)

= V

(
n⋂
i=1

〈ai,1 · x, . . . , ai,ci · x〉

)

= V
(n∏
i=1

〈ai,1 · x, . . . , ai,ci · x〉︸ ︷︷ ︸
=P(A)

)

Here, the associated polynomial ring is k[x] = k[x1, . . . , xD]. The product of A's individual
linear spaces' vanishing ideals is denoted by P(A). Since every factor in P(A) is a homogeneous

7

ideal, the entire product of ideals is homogeneous and so is its radical I(A). The polynomials
that are vanishing on A potentially have a strictly lower degree than the number of subspaces
n, e.g. a transversal arrangement B of two lines and a plane in R3. B can be embedded into
the transversal union of two planes D, as every two lines span a plane. As D has polynomials
of degree 2 that vanish on it by the construction of P(D), these polynomials also vanish on the
transversal arrangement B because B ⊂ D.

We can deduce that the vanishing ideal I(A) is a direct sum

I(A) = Im ⊕ Im+1 ⊕ · · · ⊕ In ⊕ In+1 ⊕ . . .

of homogeneous components I` and the smallest m ≤ n so that Im 6= {0}. Alternatively,
I` = I(A)∩ k[x]`, the latter set denoting the homogeneous component of degree ` in the graded
ring k[x]. The �nite-dimensional vector space k[x]` has a basis given by the monomials of degree
`. Its dimension is given by

dim k[x]` = MD
` =

(
`+D − 1
D − 1

)
.

An option is to compute the equations in each homogeneous degree. Computing the equations
in the lowest homogeneous component of

P(A) = Pn ⊕ Pn+1 ⊕ . . .

is su�cient, as V(I(A)) = V(P(A)) by Lemma 2.8 in Ma et al. [24]. In doing so, we introduce
the Veronese embedding of degree h:

ν` : kD → kM
D
`

ν`

 x1
...
xD

 =

x`1

x`−1
1 x2
...
x`D

 .

The strategy employed in GPCA relies on the Veronese embedding ν`: Assume we are given a
set of noise-free samples Ω = {z1, . . . , zN} ⊂ A ⊂ kD from a transversal subspace arrangement
A and assume we know the dimensions di and the number of subspaces n. First, we compute a
Matrix Ln, consisting of the n-th Veronese embeddings of these samples.

Ln =

 νn(z1)T

...
νn(zN)T

 ∈ kN×MD
n

Computing the kernel of this matrix yields all homogeneous polynomials of degree n that vanish
on Ω. For example, this can be accomplished using the singular value decomposition (SVD).
Let C be the matrix whose columns form a basis of the kernel prescribed by the kernel-�nding
method of our choice. Then, let

Q(x) = (q1, . . . , qm) = CT νn(x)

be the generating polynomials of I(Ω) ∩ k[x]n. The following theorem on the sampling of an
algebraic set will prove useful in justifying the choice of generating polynomials in Q.

8

Theorem 3.2 (Theorem 2.9 in Ma et al. [24]). Consider a set ∅ (S ⊂ kD with vanishing ideal
I(S) generated by polynomials in k[x1, . . . , xD]≤n = k[x]0 ⊕ · · · ⊕ k[x]n. There is a �nite set
Ω = {z1, z2, . . . , zN} such that I(Ω) ∩ k[x]≤n generates I(S).

Proof. The proof of this can be found in Ma et al. [24].

Speci�cally, for su�ciently large choices of Ω, I(A) can be generated by

I(Ω) ∩ k[x]≤n ⊆ k[x]0 ⊕ k[x]1 ⊕ · · · ⊕ k[x]n = k[x]≤n.

By Hilbert's Nullstellensatz, I(A) =
√
P(A). Consequently, I(Ω) ⊇ I(A) ⊇ P(A) by Propo-

sition 2.3, as Ω ⊂ A. Consider the following theorem on the Hilbert functions of I(A) and
P(A):

Theorem 3.3 (4.7 in Derksen [12]). For a transversal arrangement A and for i ≥ n it holds
that

hI(A)(i) = hP(A)(i).

Here, hK denotes the Hilbert function ofK with hK(i) = dim(Ki) for the homogeneous component
Ki of degree i.

Proof. For the concise development and a proof of the statement, compare Derksen [12].

Hence, the dimensions of the �nite-dimensional vector spaces I` and P` are identical for ` ≥ n.
Since I(A) ⊇ P(A) are homogeneous ideals, each of their homogeneous components satis�es
I` ⊇ P`. As the dimensions of In and Pn agree by Theorem 3.3, the equality In = Pn follows.
Taking into account Theorem 3.2, for appropriate choices of Ω, the n-th graded part I(Ω)∩k[x]n
generates P(A). The previous observation P(A) =

√
I(A) implies

V(Q) = V (I(Ω) ∩ k[x]n) = V (P(A)) = V (I(A))

which justi�es our construction of Q.

First, the generalized principal component analysis computes the bases of the tangent spaces at
n di�erent sample points using the jacobian matrix

J (Q)(zi) = CT∇νn(zi)

at an arbitrary point zi ∈ Ω. Its nullspace is then calculated by a kernel method, such as the
singular value decomposition. This procedure yields a basis Bi = (b1, . . . , bdi) of the linear
space Vi containing zi. Since the column vectors of J (Q)(zi) span the orthogonal complement
of V(Q)'s tangent space at zi, its kernel spans the tangent space.

As a second step, all sample points zj that satisfy B
T
i zj = 0 are assigned to the space Vi. Already

assigned samples are excluded from �nding further bases. Subsequently, a new sample point is
chosen from Ω and the �rst step is repeated until there are no points left to segment.

This method works especially well for transversal subspace arrangements, as the tangent space at
a non-origin point yields the entire corresponding linear subspace. In particular, a linear space's
tangent space is equal at every point. Assuming that A is transversal, almost all sample points
lie on a unique subspace of A, if Ω is sampled randomly. However, the tangent space is a local
property of a variety. Therefore, the segmentation of the samples using tangent spaces is not as
useful for arbitrary algebraic varieties.

9

3.2 Recursive GPCA

The GPCA algorithm presented in the previous section depends on idealized circumstances. For
example, it assumes that both, the number of subspaces and their dimensions are known. If any
of these two assumptions is not met, adjustments need to be made. While the samples are still
noise-free, in the following we neither know the amount of linear spaces, nor their dimension.

According to Vidal et al. [35], a method called recursive GPCA solves this problem. Starting
with n = 1, GPCA is recursively applied to �nd out whether Ln is rank-de�cient. If so, the
polynomials Q are computed from Ln's kernel and the bases Bi corresponding to the n linear
spaces Vi are calculated via Q's jacobian, as was done in the original algorithm.

All points zj that satisfy B
T
i zj = 0 are added to the subspace with basis Bi and are omitted

from Ω. These particular samples zj are aggregated in a set Xi. For this new input of samples
and Vi as new ambient space, the algorithm is applied again. In doing so, we �nd out whether
there are lower-dimensional subspaces that �t this set of points. Afterwards, n is increased by
1. The procedure is repeated until each Xi can no longer be segmented into lower-dimensional
subspaces or a prescribed maximum number of subspaces nmax is reached. To gain more insights
into the algorithm, let us use the following example.

Example 3.4. Figure 3 depicts the transversal arrangement of two lines and a plane. The
corresponding vanishing ideal is given by 〈yz, x2z − z3〉 ⊂ R[x, y, z]. Assume a sample set that
contains su�cient noise-free points from each linear space. Accordingly, let 5 non-zero random
points from each line and 10 non-colinear and non-zero random points from the plane be given,
so Ω = {z1, . . . , z20}. We want to employ the recursive GPCA method with nmax = 3.

Figure 3: Transversal arrangement of a plane {z = 0} and two lines de�ned in {y = 0}.

The algorithm starts with n = 1. There is no linear form that vanishes on all sample points, as
the data points do not lie in a common plane by construction. Consequently, the kernel of L1

is trivial, corresponding to the fact that the only linear subspace containing the arrangement is
R3 itself. Proceeding with n = 2, the matrix L2 is rank-de�cient and its kernel contains a vector

10

corresponding to a polynomial of degree 2. This polynomial is given by yz and describes the
transversal arrangements of the two planes E1 = {y = 0} and E2 = {z = 0}. Subsequently, we
partition all sample points Ω to the corresponding plane by calculating the kernel of J (yz)(zi) for
some zi. By construction, 10 points are matched with E1 while 10 points are matched with E2,
creating two separate sets of samples Xi corresponding to the plane Ei. Performing the algorithm
again with X1 in the ambient space E1, yields a matrix Ln with full rank for n ≤ nmax, because
the polynomials are viewed in R[x, y, z]/I(E1) = R[x, y]. Hence, the points in X1 cannot be
segmented further and E1 is the �nal result.

Consider X2 in the ambient space E2. Notice that the corresponding coordinate ring satis�es
R[x, y, z]/I(E2) = R[x, z], so the y-coordinate is omitted. Thus, the kernel of L1 is trivial: Only
the degree 1 polynomial y vanishes on the sampleX2, because the points are assumed to lie on two
distinct lines. In L2, we �nd a vector in the kernel, which corresponds to (x−z)(x+z) = x2−z2.
In each case, this enables us to assign 5 points each to lines `1 and `2 by calculating the tangent
space at an arbitrary point zi ∈ X2 and segmenting all points that are orthogonal to the kernel of
J (x2 − z2)(zi). After picking a zi ∈ Ω that has not been segmented yet, we repeat the process.
In the resulting coordinate ring x = z or x = −z, so these points cannot be segmented any
further. As a result, the algorithm partitions Ω into 3 parts, corresponding to `1, `2 and E1.

In other words, the recursive GPCA algorithm �nds two lines and a plane. The sample points
Ω are segmented according to the space they correspond to by computing the inner product of
each point with the basis vectors of the orthogonal complement. If the inner product vanishes for
each basis element of a linear space, the sample point belongs to that space. We are optimistic
that this procedure can be applied to our method for learning an algebraic variety's vanishing
ideal. A comparable approach is discussed in Chapter 4.

3.3 Noisy Samples

From now on, let us assume that our samples Ω = {z1, . . . , zN} are corrupted with isotropic
Gaussian noise. That is,

zi = âi + ni for i = 1, . . . , N.

Here, âi is a point on A that depends on the coe�cient matrix C and ni is an independent
Gaussian random noise with covariance matrix given by the identity matrix times a positive
constant. This notion stems from the ideas presented in Ma et al. [24].

In this section, we will assume that the number of subspaces n and the corresponding dimensions
d1, . . . , dn are known. The tangent space is a local property of an algebraic variety. In a subspace
arrangement, the tangent space is constant on each linear subspace. This property can be used
to segment sample points. In general, this procedure does not work, so the tangent space is not
of interest for us.

Now, even when knowing the correct number of subspaces n and their dimensions di, noise in
the samples will almost always lead to Ln having full rank and it is therefore not mathematically
clear, which singular vectors to pick. An applicable heuristic is to choose the smallest few singular
values of Ln and the corresponding singular vectors. However, we do not know a suitable treshold
a priori. An option is to �nd out up to what number we want to pick the singular values. An
alternative is knowing, how many singular values we want to use.

We try to solve this problem by using a least square �tting approach. The idea is to minimize
the mean squared distance

min
ẑi∈A

1

N

N∑
i=1

||zi − ẑi||2.

11

Optimizing the above proves to be a di�cult task, as the closest point ẑi on the variety is a
complicated polynomial function in the coe�cient matrix C. Using Taylor's theorem, we can
avoid this issue by calculating a �rst-order approximation of the term zi − ẑi, condensed in the
following proposition.

Proposition 3.5. Assume that the polynomials in Q are linearly independent. Let z ∈ kD and
denote the closest point to z on the algebraic variety A = V(Q) by ẑ. Then the Sampson distance
(cf. Sampson [33])

Q(z)T
(
[J (Q)(z)]TJ (Q)(z)

)†
Q(z)

is a �rst-order approximation of the squared euclidian distance ||z − ẑ||2 = dist(z,A)2.

Proof. Calculating the Taylor expansion of Q(ẑ) demonstrates

Q(ẑ) = Q(z) + J (Q)(z)(ẑ − z) +O(||ẑ − z||2).

Q contains generators of A's vanishing ideal and ẑ ∈ A, so Q(ẑ) = 0. Omitting the terms of
higher order indicates that

[J (Q)(z)]TJ (Q)(z) · (z − ẑ) ≈ [J (Q)(z)]TQ(z)

⇒ (z − ẑ) ≈
(
[J (Q)(z)]TJ (Q)(z)

)†
[J (Q)(z)]TQ(z).

Here, the symbol † signi�es the Moore-Penrose inverse (cf. Penrose [30]). This theory is employed,
as we do not know, whether the m×m product of jacobians has full rank. In this case, m is the
number of equations in Q. Finally, the above equations transform to

||z − ẑ||2 ≈ Q(z)TJ (Q)(z)
((

[J (Q)(z)]TJ (Q)(z)
)†)2

[J (Q)(z)]TQ(z)

= Q(z)T
(
J (Q)(z)[J (Q)(z)]T

)†
Q(z),

concluding the proof.

Using the above proposition, we can approximate the mean euclidian distance from our data
points Ω to the subspace arrangement A by the Sampson distance LS(C; Ω, n)

1

N

N∑
i=1

||ẑi − zi||2 ≈
1

N

N∑
i=1

Q(zi)
T
(
J (Q)(zi)[J (Q)(zi)]

T
)†
Q(zi) = LS(C; Ω, n) (1)

for Q(x) = CT νn(x) with coe�cient matrix C ∈ km×MD
n . Geometrically, in a non-singular point

zi the jacobian J (Q)(zi) contains m linear independent vectors from the orthogonal complement
of the tangent space of A at zi. The number m is equivalent to the number of linear independent
polynomials in Pn. Consequently, m is equal to the dimension of In by Theorem 3.3. Thinking
further, our goal is to calculate the euclidian distance ||zi − ẑi||2 without knowing ẑi, which is a
fundamental di�culty. To understand why this is di�cult, let us consider Figure 4 that shows a
parabola under the naïve objective function ||Q(x)||2.

The dashed lines depict the contour lines Q(x, y) = ε and Q(x, y) = −ε. Notice that the
points a, b have the same measure ||Q(a)|| = ||Q(b)|| from the parabola. While d′ represents
the euclidian distance from the points to the original parabola, d′′ is calculated using a line
orthogonal to the contour line Q(x, y) = ±ε. In the points of high curvature, i.e. points close to
the origin, the contour lines are further away from the original curve than where the parabola is
almost linear. In the euclidian distance, a and b hardly have the same distance to our parabola.
Only the special choice of distance function || · ||2 makes this behaviour possible.

12

Figure 4: Three Contour Lines of Q(x)TQ(x) = ||Q(x)||2, where Q(x, y) = y − x2.
This image was taken from Sampson [33]

As a consequence, points far away from the origin are more heavily weighted than points close
to the point of highest curvature in the mean squared error 1

N

∑N
i=1 ||Q(zi)||2. To combat this,

Sampson [33] suggests a method for planar curves: To calculate d′′ the paper uses a �rst-order
approximation of Q. In most situations, this is a good approximation of the desired euclidian
distance d′, which is

d′ = ||a′ − a|| ≈ d′′ = ||Q(a)||
||∇Q(a)||

at a point a. In the case m = 1 of Q only containing a single polynomial, our objective function
(1) is equivalent to the above distance. The Sampson distance is the natural extension of this
idea: At any point zi, our goal is to calculate the distance to the variety A. The euclidian
distance from zi to ẑi, i.e. the closest point on A to zi, is given by an orthogonal line on A
through zi. Calculating the orthogonal complement to A's tangent space at ẑi produces the
desired result. By a previous observation, a generating system of the orthogonal complement in
regular points is given by the row vectors of J (Q)(ẑi). Since we do not have access to this, we
use a linear approximation of Q in ẑi which is exactly how we constructed (1).

Remark 3.6. In our setting, the subspace arrangement A is calculated via the vector of polyno-
mials Q. If the naïve loss function ||Q(z)||2 is used, points far away from the origin are usually
weighted more heavily than points close to the origin. Assuming that there is a polynomial of
degree greater than 1 in Q, ||Q(z)||2 becomes larger, the farther away z is from the origin. This
phenomenon even happens, when the euclidian distance of z from the variety A remains the same.

The Sampson distance (1) thus weighs the points in our sample set Ω more evenly, as it compen-
sates for the norm of the vectors that span the orthogonal complement of A in z.

However, minimizing the Sampson distance contains a redundancy. As the ideal that is generated
by Q(x) is closed under addition and multiplication with ring elements and all polynomials in Q
have the same degree by assumption, its zero set is the same as the zero set of MQ(x) for any
regular matrix M ∈ Rm×m, because . Mutual linear independence between the polynomials in
Q is maintained this way. Moreover, the Sampson distance is invariant under nonsingular linear
transformation M , so the polynomials in Q(x) that minimize the Sampson distance are not

13

unique. Therefore, we impose conditions on the coe�cients of the polynomials in Q(x). Ma et
al. [24] consider the m×m matrix 1

N

∑N
i=1 J (Q)(zi)[J (Q)(zi)]

T for this purpose, as constructed
in Proposition 3.7.

Proposition 3.7. If there are no lower-degree polynomials than those occuring in Q that vanish
on Ω, then the matrix 1

N

∑N
i=1 J (Q)(zi)[J (Q)(zi)]

T is symmetric positive de�nite.

Proof. The above matrix is a real symmetric positive semi-de�nite matrix by construction. If the
product of jacobians J (Q)(zi)[J (Q)(zi)]

T ∈ Rm×m was rank-de�cient, then so would J (Q)(zi)
be. Consequently, there is a linear relation between the rows of J (Q)(zi), i.e. the gradients of the
individual polynomials that occur in Q. As each entry of the gradient has a strictly lower degree
than its corresponding polynomial, we can construct a lower-degree polynomial that vanishes on
zi. However, assuming that the matrix from the proposition is rank-de�cient, there is a singular
vector v ∈ Rm \ {0} such that

vT

(
1

N

N∑
i=1

J (Q)(zi)[J (Q)(zi)]
T

)
v =

1

N

N∑
i=1

(
vTJ (Q)(zi)[J (Q)(zi)]

T v
)︸ ︷︷ ︸

≥0

= 0,

as every individual matrix Ji = J (Q)(zi)[J (Q)(zi)]
T is positive semi-de�nite. For this to hold,

each vTJ (Q)(zi)[J (Q)(zi)]
T v needs to be 0. Consequently, the matrix Ji is singular, resulting

in a linear relation between the rows and by that a lower-degree polynomial that vanishes on Ω.
This is in contradiction to our assumption, proving that the average of the jacobian products at
the data points Ω has full rank.

When employing the recursive GPCA algorithm discussed in Section 3.2, assuming that there
are no lower-degree polynomials vanishing on Ω is sensible. The lowest-degree polynomials that
occur in the vanishing ideal of A are found �rst, demonstrating that in each degree there are no
lower degree polynomials than the ones currently considered vanishing on the data set.

As Proposition 3.7 shows, the jacobian products' average in the sample points is symmetric
positive de�nite, meaning that it can be diagonalized with strictly positive eigenvalues λi. Since
MQ(x) has the same vanishing locus as Q(x) for a regular linear transformation M , we can
scale the resulting diagonalized jacobian product using a diagonal matrix M with entries 1√

λi
,

maintaining the same vanishing set. Analogous to Ma et al. [24], this procedure's outcome is
the identity matrix, leading to the desired constraint

1

N

N∑
i=1

J (Q)(zi)[J (Q)(zi)]
T = Im×m,

with m denoting the number of polynomials in Q(x). Ultimately, we formulate the following
constrained nonlinear optimization problem:

Q? = arg min
Q

1

N

N∑
i=1

Q(zi)
T
(
J (Q)(zi)[J (Q)(zi)]

T
)†
Q(zi) (2)

s.t.
1

N

N∑
i=1

J (Q)(zi)[J (Q)(zi)]
T = Im×m (3)

Optimizing the above objective function is possible with one of the myriad nonlinear optimiza-
tion algorithms, for example an iterative gradient descent technique. However, a su�ciently good
initialization is needed for any such method to converge to a global minimum quickly. Finding
such an initialization is the next step in the algorithm's development.

14

Both, the least square �tting error ||Q(z)||2 and the constraint (3) are invariant under unitary
transformations R ∈ Rm×m with RTR = Im×m, demonstrating there still is a redundancy in
the optimization problem (2). Similar to Ma et al. [24], the arithmetic mean of the matri-
ces J (Q)(zi)[J (Q)(zi)]

T is required to be Im×m, so we can approximate each of these matrix
products with the identity. With this in mind, the sum

1

N

N∑
i=1

Q(zi)
TQ(zi) =

1

N

N∑
i=1

||Q(zi)||2

approximates the Sampson distance (1). The following proposition then paves the way for an
e�cient algorithm that �nds a good initialization to our nonlinear optimization problem (2).

Proposition 3.8. Given C = (c1, . . . , cm) and Q(x) = CT νn(x), we can transform the least
squares problem

Q? = arg min
Q

1

N

N∑
i=1

||Q(zi)||2 subject to
1

N

N∑
i=1

J (Q)(zi)[J (Q)(zi)]
T = Im×m (4)

to an eigenvalue problem of the form

Γ−1Σc?i = λic
?
i for i = 1, . . . ,m (5)

with C? = (c?1, . . . , c
?
m) representing the optimal solution to the constraint program (4) and ma-

trices given by

Σ =
1

N

N∑
i=1

νn(zi)νn(zi)
T and Γ =

1

N

N∑
i=1

∇νn(zi)∇νn(zi)
T .

Proof. Let Q = (q1, . . . , qm) = CT νn(zi). We deduce

||Q(zi)||2 =
m∑
j=1

qj(zi)
2 =

m∑
j=1

(cTj νn(zi)νn(zi)
T cj) = tr

(
CT νn(zi)νn(zi)

TC
)
.

As the trace commutes with addition and scalar-multiplication and J (Q)(zi) = CT∇νn(zi), the
constraint programming problem (4) is equivalent to

C? = arg min
C

tr(CTΣC) subject to CTΓC = Im×m. (6)

Subsequently, we use Lagrange multipliers to transform the optimization problem (6) into an
eigenvalue problem. To do so, we reformulate (6) as follows:

C? = arg min
C

m∑
j=1

cTj Σcj

s.t. CTΓC − Im×m = 0.

According to Ma et al. [24], Lagrange multipliers enable us to set up the following loss function
with Λ = (λi,j)

m
i,j=1:

L(C,Λ) =

m∑
j=1

cTj Σcj −
m∑

i,j=1

λi,j
(
cTi Γcj − δi,j

)
.

Here, δi,j is the Kronecker delta. As the necessary condition for optima requires, L's derivative

15

is 0 in optimal solutions. Accordingly,

0 =
∂L(C,Λ)

∂ci
= 2Σci − 2

m∑
j=1

λi,jΓcj for i = 1, . . . , m and

0 =
∂L(C,Λ)

∂λi,j
= cTi Γcj − δi,j for i, j = 1, . . . , m.

Notice that cTj Γci = 0 for i 6= j. As a result, we omit cTj Γci in the loss function L(C,Λ), made
possible by maintaining the mixed constraints. Deriving the new loss function reveals

0 = 2Σci − 2λi,iΓci for i = 1, . . . , m and

0 = cTi Γcj − δi,j for i, j = 1, . . . , m.

The �rst line is a generalized eigenvalue problem. We denote λi,i by λi and subsequently consider
0 ≤ λ1 ≤ · · · ≤ λm as the eigenvalues corresponding to ci in ascending order. We know that
they are non-negative, as both Σ and Γ are symmetric positive semi-de�nite matrices by con-
struction. With noisy data and no polynomials of degree lower than n vanishing on the subspace
arrangement A, Γ has full rank. As Γ is a square matrix, it is invertible and consequently, the
generalized eigenvalue problem Σci = λiΓci is equivalent to the eigenvalue problem

Γ−1Σci = λici. (7)

A m×m matrix is diagonizable if and only if there is a basis of m eigenvectors. By Proposition
3.7, the matrix Γ and its inverse Γ−1 are symmetric positive de�nite. Accordingly, the invertible
square root Γ−

1
2 of Γ−1 exists, enabling us to write

Γ
1
2 Γ−1ΣΓ−

1
2 = Γ−

1
2 ΣΓ−

1
2 .

The latter expression is symmetric because Γ−
1
2 and Σ are both symmetric, so Γ−1Σ is similar

to a symmetric matrix. As a result, Γ−1Σ is diagonizable, implying this matrix has m linearly
independent eigenvectors. These vectors can be chosen to respect the orthonormality constraints
in CTΓC = Im×m, as proven in the following.

Let ci and cj be two eigenvectors from the eigenvalue problem (7) with distinct eigenvalues λi
and λj . By the symmetry of Σ,

λjc
T
i Γcj = cTi Σcj = cTi ΣT cj =

(
cTj ΣT ci

)T︸ ︷︷ ︸
∈k

= cTj Σci = λic
T
j Γci. (8)

Since Γ is symmetric positive de�nite, it de�nes an inner product 〈-, -〉Γ and cTj Γci = cTi Γcj
holds. As the eigenvalues were chosen to be distinct, the equations (8) show cTj Γci = 0. The
Gram-Schmidt theorem (cf. Preston [32, p. 158]) demonstrates for eigenvectors with the same
associated eigenvalue λ, that we can choose an orthogonal basis of the eigenspace with respect to
〈-, -〉Γ. By normalizing ci with 〈ci, ci〉−1

Γ , a solution C = (c1, . . . , cm) to the eigenvalue problem
(7) automatically satis�es the constraint from (4), proving the claim.

Let C? = (c?1, . . . , c
?
m) be a solution to the eigenvalue problem (5) in Proposition 3.8. According

to Ma et al. [24], the polynomials Q?(x) = (C?i)T νn(x) lead to a good initialization to the
constraint programming problem (2). Typically, a reasonable gradient descent technique only
needs a few iterations to converge to a global minimum.

16

4 Learning Equations of Algebraic Varieties

In Constrast to Chapter 3, which introduces a way to learn polynomials vanishing on a subspace
arrangement, in this chapter, these methods are generalized to arbitrary algebraic varieties V .
To begin with, existing methods for learning polynomials that approximate sample points under
given restrictions are investigated. While the Buchberger-Möller algorithm (cf. Möller and
Buchberger [27]) has proven to work well in exact arithmetics (cf. Abbott et al. [1]) and has
been extended to noisy data (cf. Heldt et al. [22]), it outputs the ideal of all polynomials vanishing
on the samples. The resulting vanishing ideal is necessarily zero-dimensional, ignoring the data's
topological and geometric structure. As a �rst considerable advance in learning polynomials that
respect the data's geometry, we mention the article Learning Algebraic Varieties from Samples
by Breiding et al. [5]. In the following, the algorithm that is introduced in Breiding's paper is
reproduced. We extend it in later sections, using the statistical methods Ma et al. and Vidal et
al. [24, 35] establish with the generalized principal component analysis (cf. Chapter 3).

4.1 Presentation of the Basic Method

Assume for this section that Ω = {z1, . . . , zN} ⊂ kD is a noise-free sample set from an algebraic
variety V that is a complete intersection. Equivalently, its codimension codim(V) is equal to the
minimum number of generating polynomials. Generally, not all generators of the vanishing ideal
I(V) are homogeneous polynomials, if V is not a projective variety. Thus, we need a di�erent
concept than the Veronese embedding to compute the vanishing ideal I(Ω). Such a concept is
presented in Breiding et al. [5]. For a �nite, linearly independent subsetM ofR = R[x1, . . . , xD],
we write UM(Ω) for the N×|M| matrix whose i-th row consists ofM's evaluation in the sample
point zi. To understand UM(Ω) better, consider some special choices ofM.

PickingM = Rn, the set of monomials of degree n, results in a matrix Ln that we have already
seen in Chapter 3. Recall that Ln's rows consist of the n-th Veronese embeddings of the points
in Ω. For the set M = R≤n that consists of the monomials of degree up to n, we call UM(Ω)
the multivariate Vandermonde matrix. Its name derives from the Vandermonde matrix that is
used in various articles on interpolation (cf. Björck and Pereyra [2]). In our setting, it can be
realized with D = 1. Conveniently, the kernel of UM(Ω) equals the �nite-dimensional vector
space I(Ω) ∩RM. Hence, when the polynomial basisM is chosen well enough, we can �nd the
vanishing ideal I(V) of the variety V . The question remains, what a suitable choice of M is.
Without prior knowledge about the variety, it seems reasonable to assume that R≤n is a good
choice forM. If n is su�ciently large, all polynomials in I(V) can be generated from I(Ω)∩R≤n.
The following propositions helps in quantifying our choice ofM.

Lemma 4.1 (5.2 in Breiding et al. [5]). If the inclusion of I(V) ∩ RM into its superspace
I(Ω) ∩ RM = ker(UM(Ω)) is an equality, then

|Ω| = N ≥ |M| − dim(I(V) ∩RM).

Proof. By assumption, I(V) ∩ RM = ker(UM(Ω)). Since UM(Ω) consists of N rows, N is an
upper bound on the matrix' rank. The statement of the lemma follows, as the rank of a matrix
is equal to the number of columns minus the dimension of its kernel.

The samples Ω are �xed, leavingM as the only variable. There are some interesting propositions,
both in Breiding et al. [5] and Ma et al. [24], on a dynamic selection of M. Nevertheless,
we only deal with a known number of linear independent equations m and known maximal
occuring degree n of I(V)'s generating equations. In the special case RM = R≤n, Lemma
4.1 demonstrates that at least as many samples as the di�erence

(
n+D
n

)
−
∑n

j=1 dim(I(V)j) are

17

necessary. This expression has an upper bound given by
(
n+D
n

)
. Since the dimension of the

ambient space D is �xed, the degree n has to attain a value such that(
n+D

n

)
−

n∑
j=1

dim(I(V)j) ≤
(
n+D

D

)
=

(n+D) · · · (n+ 1)

D!
≤ N.

As no further information about the properties of V is available, we take advantage of the matrix
UR≤n

(Ω) to calculate those equations by computing its kernel. Breiding et al. [5] presents
three methods for �nding a kernel: The singular value decomposition SVD, the R from a QR-
decomposition or the reduced row echelon form RREF. Making use of either of these algorithms,
FindEquations has proven to perform well on samples coming from special varieties (cf. Breiding
et al. [5]). Nonetheless, the method shows several issues. First and foremost, noise in the data
points Ω leads to false results. To understand that claim, consider Figure 5.

Figure 5: FindEquations applied to points sampled from 〈y2 − x3 − x2〉 with varying noise.

In this �gure, the displayed samples are acquired from the ideal 〈y2−x3−x2〉 using the rejection
sampling technique explained in Breiding and Marigliano [4]. These data points are corrupted
with isotropic Gaussian noise ranging from 0 to 10%. The curves depicted in these images are
calculated using the algorithm FindEquations. Thus, the �rst picture on the left resembles the
original nodal cubic.

Visually, the variety that FindEquations learns does not �t the depicted sample points well when
the noise is increased. Intuitively, even above 6% Gaussian noise, the variety that optimally �ts
the data points should closely resemble the nodal elliptic curve, containing a singularity in 0.
Even so, FindEquations works reasonably well until more than 3% noise is added. This noise
threshold is bound to drastically decrease when dealing with more complex systems. In particular,
a higher-degree variety in an ambient space with more dimensions than 2 already succeeds in
breaking the algorithm, as illustrated in Section 4.6. This observation shows that an algorithm
more robust against perturbations is necessary.

A second problem is that the multivariate Vandermonde matrix is severely ill-conditioned. In
Breiding et al. [5], methods to increase the algorithm's stability are suggested. Nevertheless,
improving the stability of FindEquations is not the focus of the thesis, as the following sections
avoid the Vandermonde matrix entirely.

Once multiple equations are learned (m > 1), sparsity becomes an issue. In real-life applications,
we are used to a sparse presentation of polynomial ideal generators. This way, the ideal is vastly
more e�cient to store. In contrast, the singular value decomposition yields an orthonormal basis
for I(Ω) ∩ R≤n. Section 5.2 and Example 5.3 in Breiding et al. [5] explain this issue in greater

18

detail, proposing that the QR decomposition results in a sparse basis. However, in Breiding's
paper it is laid out that there is a trade-o� between sparsity and the stability of computations.
Consequently, the computation of a sparse basis is usually less accurate in the presence of noise
than the computation of a dense basis.

4.2 Choosing a Suitable Error Function

As we have seen in the previous section, the curve that FindEquations learns does not �t the
samples in the presence of noise (cf. Figure 5). It is essential to quantify the result of our
algorithm. In particular, an error function is necessary to evaluate how well the learned variety
approximates the data points Ω. A naïve approach is to use the mean squared error

EMS(Q; Ω) =
1

N

N∑
i=1

||Q(zi)||2.

After all, our goal is that Q(zi) = 0 for each zi ∈ Ω, because then the points in Ω lie on the
vanishing set generated by the polynomials in Q. Either way, this error function depends on the
scaling of Q's coe�cients. In Fitzgibbon et al. [16], several scalings are recommended to solve
this issue. For example, requiring c1 + 1

2c2 + 1
2c3 = 1, with ci the i-th column in the coe�cient

matrix C is recommended. Alternatively, a normalization of the row vectors in C is proposed.

For arbitrary varieties, we have already seen an example in Section 3.3. The loss function EMS

does not describe the discrepancy between samples and variety accurately in points with high
curvature. In addition, EMS is biased towards methods based on least squares formulations. To
overcome this obstacle, we introduce the Sampson distance LS(C; Ω, n) corresponding to

ESD(Q; Ω) =
1

N

N∑
i=1

Q(zi)
T
(
J (Q)(zi)[J (Q)(zi)]

T
)†
Q(zi).

As geometrically elaborated in Section 3.3 and further justi�ed in the following section, ESD is
a good �t for our problem's objective function. In demonstrating that our suggested method
performs well, using the error ESD is a self-ful�lling prophecy: Any loss function is biased towards
an algorithm that optimizes the same objective function.

Instead, taking the di�erence between the original and the learned variety seems to be a good idea.
This is infeasible for several reasons. Firstly, the integral over the di�erence of two vanishing sets
easily becomes in�nitely large. Instead, a Monte Carlo approach seems promising. For instance,
sampling points yi and ŷi on both varieties lying on the same hyperplane and calculating the
smallest occuring euclidian distances is a suitable method. Let us assume that there are k and
k̂ respectively of these points sampled from either variety. This procedure can be repeated for
` ∈ N times, resulting in

EMC(Q; Ω) =
1

`

∑̀
i=1

1

k̂

k̂∑
ĵ=1

min
j∈[k]
||yi,j − ŷi,ĵ ||

2.

Yet, there is no guarantee for the accuracy of this method. A small change in the hyperplane
results in a large change in error, as we are dealing with polynomials of degree n. On a further
note, we do not necessarily know the original equation in real-world applications. It is sensible
to choose an error function that does not depend on prior knowledge of the equations.

Ultimately, the desired error function turns out to be the euclidian distance of the points to the

19

variety that was learned by the algorithm,

Edist(Q; Ω) =
1

N

N∑
i=1

dist(zi, V(Q)).

This error is a measure for how well the learned equations �t the given samples. For curves, a
method for the error's calculation is laid out in Breiding and Timme [6]. It depends on solving
the polynomial system [

det
(
x− zi J (Q)(x)T

)
Q(x)T

]
= 0 (9)

obtained by attaching the vector x− zi to the jacobian J (Q)(x)T . Each solution of the system
(9) is a critical point in the euclidian distance to zi that lies on the variety V(Q). The solution
xi with the smallest distance to the point zi is selected and we calculate the mean distance

Edist =
1

N

N∑
i=1

||zi − xi||2.

A solution to the polynomial system (9) can be obtained via HomotopyContinuation.jl (cf.
Breiding and Timme [7]). Generalizing this approach to arbitrary varieties involves �nding the
regular points xi ∈ V(Q) such that zi − xi is perpendicular to V(Q)'s tangent space TxiV(Q) in
xi. The smallest distance direction is given by an orthogonal vector. As already observed, the
orthogonal complement of the tangent space in xi is spanned by the row vectors of the jacobian
J (Q)(xi). Consequently, what is really done when solving the polynomial system (9) is to check,
whether x−zi is linearly dependent on the row vectors of J (Q)(x) for a regular point x ∈ V(Q).
In other words, we check whether x− zi lies in the orthogonal complement of TxV(Q).

Assume that J (Q)(x) has rank m for a regular point x ∈ V(Q), so m = codim(V(Q)). As
discussed earlier, we want x − zi to be perpendicular to Tx(V(Q)). Equivalently, all (m + 1) ×
(m+ 1) minors of [

x− zi
J (Q)(x)

]
vanish (cf. Draisma et al. [14]). According to Lemma 2.1 from Draisma et al. [14], the variety
consisting of all points x, where both Q and all (m+ 1)× (m+ 1) minors of the aforementioned
system vanish, is �nite for general points zi. The mean distance Edist is a feasible error function,
as it is invariant under scaling, does not depend on prior knowledge of the underlying vanishing
ideal and is not biased towards another method. It uses the samples' euclidian distance to the
learned variety. If a variety is a good approximation of the samples Ω, the mean distance is
small.

4.3 Transferring GPCA to Arbitrary Varieties

Similar to Section 3.3, let the samples Ω = {z1, . . . , zN} be corrupted with isotropic Gaussian
noise. That is

zi = âi + ni for i = 1, . . . , N,

with âi a point on V and ni some random noise. We still assume that the amount of equations m
and the highest occuring degree n for a minimum generating system of I(V) are known. As the
presence of noise makes �nding vanishing polynomials impractical, we search for m polynomials
of degree n, whose vanishing set approximates our samples Ω well.

It is impractical to use the n-th Veronese embedding in this case, because we are not generally

20

dealing with homogeneous polynomials. We can solve this issue by embedding the samples into
PDk , using one of the standard a�ne charts of projective space:

ι : kD ↪→ PDk
(y1, . . . , yD) 7→ [y1 : · · · : yD : 1].

The coordinate ring of PDk is k[x1, . . . , xD, xD+1]. As a result, the standard Veronese embedding
of projective space νPn(x1, . . . , xD+1) of degree n can be applied again. When choosing an a�ne
patch by mapping xD+1 7→ 1, a vector consisting of all monomials up to degree n in k[x1, . . . , xD]
is the outcome. We denote it by ν≤n(x). With the elimination monomial order by xD+1 and a
degree-respecting order on the other variables xi for the entries of the vector ν

P
n , it is possible to

express ν≤n in terms of the Veronese embeddings of degree up to n:

ν≤n(x)T =
(
νn(x)T , νn−1(x)T , . . . , ν1(x)T , 1

)
.

Remark 4.2. Conveniently, both vectors νPn and ν≤n have the same length by construction.
This is due to the fact that the dimensions of the vector space k[x1, . . . , xD]≤n agrees with the
dimension of k[x1, . . . , xD, xD+1]n.

While enabling us to work in a projective setting, the embedding ι makes it possible to calculate
polynomials for samples in a�ne space. Initially, assume Ω ⊂ kD. The polynomials that generate
the vanishing ideal I(Ω) are denoted by Q(x) = CT ν≤n(x). Analogous to Section 3.3, we can
set up a constraint programming problem

Q? = arg min
Q

1

N

N∑
i=1

Q(zi)
T
(
J (Q)(zi)[J (Q)(zi)]

T
)†
Q(zi)

s.t.
1

N

N∑
i=1

J (Q)(zi)[J (Q)(zi)]
T = Im×m

for zi ∈ Ω. Subsequently, we intend to employ the eigenvalue problem introduced in Proposition
3.8. With it, we want to �nd a good initialization for the above nonlinear optimization problem,
as done in Section 3.3. However, there is an issue with this approach: Since ν≤n contains a con-
stant term, the last column of∇ν≤n(x) is entirely zero. For this reason, the last row and column of
∇ν≤n(zi)∇ν≤n(zi)

T is zero for each i ∈ {1, . . . , N}. As a result, Γ =
∑N

i=1∇ν≤n(zi)∇ν≤n(zi)
T

is not invertible, revealing we cannot convert the generalized eigenvalue problem to a regular
eigenvalue problem.

By embedding Ω into PDk via ι, this issue can be solved. Using the n-th Veronese embedding νPn of
PDk instead of ν≤n on k

D, we are in the same case as in the generalized principal component anal-
ysis introduced in Section 3.3. Accordingly, for the new array of polynomials P (x) = CT νPn(x),
we can set up the same constraint program as was done in the nonlinear optimization problem
(2) with the samples ι(Ω) = (ιz1, . . . , ιzN). Namely,

P ? = arg min
P

1

N

N∑
i=1

P (ιzi)
T
(
J (P)(ιzi)[J (P)(ιzi)]

T
)†
P (ιzi) (10)

subject to
1

N

N∑
i=1

J (P)(ιzi)[J (P)(ιzi)]
T = Im×m. (11)

21

For initializing this nonlinear optimization problem, we can �nally employ the eigenvalue problem

Γ−1Σc?i = λic
?
i (12)

with Σ =
1

N

N∑
i=1

νPn(ιzi)ν
P
n(ιzi)

T and Γ =
1

N

N∑
i=1

∇νPn(ιzi)∇νPn(ιzi)
T

that is discussed in Section 3.3. The eigenvalue problem (12) is a sensible choice for an initializa-
tion, as proven in Proposition 3.8. The Veronese embedding νPn guarantees that Γ is invertible,
if there are no polynomials of degree strictly smaller than n vanishing on V , analogous to Ma et
al. [24].

Remark 4.3. This small derivation from Section 4.1 enables us to simultaneously treat projective
and a�ne varieties. While for a�ne varieties the above procedure is used, for projective varieties
we can employ the nonlinear optimization problem (10) without embedding the samples in advance.

Remark 4.4. The transformation from projective to a�ne variety does not follow by mapping
the last coordinate to 1. The programming language Julia implicitly chooses a monomial order in
νPn that does not respect the explicit choices discussed in this section. When we want to compute
the vanishing ideal of an a�ne variety, we need to be aware of this. Before calculating the �nal
output Q, the entries in C are rearranged accordingly.

All of the above notions let us to present an algorithm. It computes the equations generating a
vanishing set from noisy data points drawn from an algebraic variety.

Algorithm 1: LearnVanishingIdeal(Ω,m,n)

Input: A poissbly noisy set of samples Ω ⊂ PDk , the codimension of the underlying
variety m and the highest allowed degree n.

Output: Array of Polynomials Q = (q1, . . . , qm) of degrees at most n that �t Ω well.

initialization
startEigen = �ndStartValues(Ω,m,n)

lossEigen = sampsonDistance(Ω, m, n, C, startEigen)
outputEigen = gradientDescent(lossEigen, C, startEigen, m)

return outputEigen'*vectorOfMononials(x,n)

In the initialization, two polynomial variables x and C are instantiated and in the a�ne case, the
samples are embedded into projective space via ι. Additionally, the method vectorOfMononials

creates νPn . Afterwards, an array of start values startEigen is calculated by solving the eigen-
value problem (12). The Sampson distance (cf. Section 3.3) is then used to generate the loss
functions lossEigen.

There is a fundamental di�culty in �nding a pseudoinverse for a matrix with polynomial coe�-
cients in C, namely J (Q)(zi)[J (Q)(zi)]

T . In a general matrix ring, inverse elements do not neces-
sarily exist. Only after having evaluated J (Q)(zi)[J (Q)(zi)]

T , the pseudoinverse is meaningful.
This problem is addressed in Sampson [33] and resolved as follows: When calculating the loss
function, the initial values of C are inserted into the product of jacobians J (Q)(zi) [J (Q)(zi)]

T

for each zi ∈ Ω. Consequently, this procedure produces a constant weighting in the loss function
depending on the start values. For that reason, the loss function (10) is a polynomial of degree
2 in C's entries. Thereafter, an adaptive gradientDescent is used to �nd a minimum of the

22

Sampson distance. One gradient descent update is given by the equation

Ct+1 = Ct − γt∇CF (Ct),

with Ct as the current value of the coe�cient matrix C and γt a scalar that is adaptively chosen
with respect to the rate of change. F is the Sampson distance calculated before. The resulting
con�guration of C is then multiplied with νPn(x) and returned.

One may wonder, whether the problem of FindEquations not �tting noisy samples well displayed
in Figure 5 is solved by this method. A quantitative approach is provided in a later section,
but when even the simple problem of �nding a planar elliptic curve cannot be solved by the
presented algorithm, the approach is not promising. In Figure 6, a comparison between the
method FindEquations from Section 4.1 and our method LearnVanishingIdeal is presented.

Figure 6: Comparative contour plots of the two methods' results.

In a similar vein as in Section 4.1, a sample set from the ideal (y2 − x2 − x3) is used with
7% Gaussian noise added. The polynomial on the left of Figure 6 is derived using the method
LearnVanishingIdeal introduced in this chapter and the polynomial on the right is derived using
the method FindEquations. The log squared error log(q(x, y)2) of the learned polynomial q is
plotted as contour lines. While the top image includes the scattered data points Ω, the bottom
image simply contains the contour plot. The darker the region, the smaller is log(q(x, y)2) and
hence, the closer q is to 0. The logarithm helps to distinguish values close to 0.

We can deduce that the vanishing locus on the left �ts the data points Ω better than the
polynomial derived via the method FindEquations. Even the singularity of the original elliptic
curve is recovered. As already mentioned, this behaviour is quanti�ed with experiments in
Section 4.6 and raises hope for useful results, even in the presence of noise.

As a �nal remark, the sample points in the images on the right on average lie in darker regions.

23

This is related to observations about the Sampson distance explained in Section 3.3: The mean
squared error is smaller on the right variety. For this reason, it is apparently not a good measure
for the approximation's quality, because the variety on the left �ts the data points better. With
the mean euclidian distance, a more suitable error function is described in Section 4.2.

4.4 Variations of the Algorithm

A question that immediately arises after having suggested an algorithm addresses its perfor-
mance. To answer the question, it is sensible to choose more than the smallest m singular values
from the eigenvalue approach (12). Possibly, the best initialization for the nonlinear optimiza-
tion problem (10) is not among the vectors corresponding to the smallest singular values. Higher
con�dence about the choice of initialization can be obtained by using all vectors corresponding to
singular values within a margin of the m-th smallest singular value. We use τ ·λm as a threshold,
such that all singular values λi ≤ τ · λm are considered as start values for the iteration. Sub-
sequently, we pick all m-element subsets of these singular vectors to create distinct m-element
combinations that are all fed into the gradient descent algorithm. The optimized combination
with the smallest error (cf. Section 4.2) is then returned.

Especially in noise-free cases, the method FindEquations performs solidly, in some cases even
better than the proposed method LearnVanishingIdeal. We try to make use of this behavior by
utilizing the multivariate Vandermonde matrix to �nd start values for the optimization problem
(10). With the start value combinations from the previous paragraph, we �nd the con�guration
with the smallest error. In doing so, both, the start values and the outcome of the iteration are
considered. According to Breiding et al. [5], this idea combats one of the issues from Section 3.1.
Without a priori knowledge about the true number and maximal degree of the equations, we can
use the ordered singular values to guess how many equations are necessary to �t the data. As laid
out in Ma et al. [24], the knee point of the singular values' graph from the eigenvalue approach
(12) is much sharper compared to the singular values' graph of the multivariate Vandermonde
matrix. This suggests we should base the amount of singular values on the eigenvalue approach,
rather than the Vandermonde approach.

Another improvement can be obtained by reusing the output of the gradient descent method and
calculating the Sampson distance, with the prior output as new initialization. Since the output is
now closer to the original vanishing locus, the new loss function is an even better approximation
of the sample points' true distance from the variety. This loss function will then be used to
perform another gradient descent step, leading to the �nal result.

These ideas are implemented in the advanced algorithm LearnVanishingIdeal on the next page.
Here, the variable iter corresponds to the number of times the �ne-tuning of the loss function is
performed. We propose iter = 2, as our experiments already promise good results after improv-
ing the Sampson distance once. The attentive reader might have noticed the threshold variable
τ . As mentioned earlier in this section, our intention is to consider more than m singular vectors
as initialization for the iteration. Thus, we pick all start values with singular values within the
threshold [0, τ ·λm] for the m-th smallest singular value λm from the eigenvalue problem (12). A
suitable pick is τ = 2.0, as this promises to maintain a good balance between performance and
complexity in the algorithm. Moreover, we pick the same number of smallest singular values from
the Vandermonde system (cf. Section 4.1). Iterating through all m-element subsets of the start
values, a gradient descent technique is applied to the Sampson distance (10), initialized with the
aforementioned combination of start values. The coe�cient vectors intermediateValues with
the smallest error is returned. Suitable choices for error are discussed in Section 4.2.

While signi�cantly improving the algorithm's accuracy, the above variations share one drawback:
They worsen the algorithm's already considerably long runtime. In the Julia programming

24

language, most of the involved complexity derives from polynomial manipulations, such as mul-
tiplication and di�erentiation. The involved matrix operations' runtime is negligible compared
to the polynomial operation's complexity, taking into account that the matrices' dimensions are
bounded above by N , m and the dimension of the search space

(
n+D
n

)
. All of these numbers are

insigni�cant in terms of modern linear algebra when used alongside polynomial operations.

Algorithm 2: LearnVanishingIdeal(Ω,m,n,iter,τ)

Input: A possibly noisy set of samples Ω ⊂ PDk ,
the underlying variety's codimension m,
the highest allowed degree n,
the number of iterations iter for each con�guration of start values,
a threshold τ for choosing the amount of considered singular values.

Output: Array of polynomials Q = (q1, . . . , qm) of degrees at most n that �t Ω well.

initialization
startEigen, startVander = �ndStartValuesUpToThreshold(Ω,m,n,τ)
combinations = [makeCombinations(startEigen,m), makeCombinations(startVander,m)]

globalerror = ∞
for combination in combinations do

for startValues in combination do

if error(startValues) < globalError then
outputValues = startValues

intermediateValues = startValues
for i in 1:iter do

loss = sampsonDistance(Ω, m, n, C, intermediateValues)
intermediateValues = gradientDescent(loss, C, intermediateValues, m)

if error(intermediateValues) < globalError then
outputValues = intermediateValues

end

end

end

return outputValues'*vectorOfMonomials

Our goal in the following is to implement methods to algebraically �nd both the Sampson dis-
tance and its derivative for a given value of the coe�cient matrix C. This way, polynomial
manipulations are completely avoided. While the Sampson distance itself is needed to calculate
an approximation of the current loss in the gradient descent algorithm, its derivative is necessary
to determine the direction of the following optimization step. The Sampson distance (10) itself
only depends on the coe�cient matrix C, as the sample points Ω are �xed. When previously
injecting the current value of the coe�cient matrix C, computing the value of the loss function
is devoid of polynomial operations.

Calculating the derivative algebraically is harder, as a scalar-by-matrix derivative needs to be
computed. To achieve that, let us �rst de�ne what is meant when talking about deriving a scalar
function by a matrix:

25

De�nition 4.5. Let Φ : kp×q → k be a scalar function in a p × q matrix X = (xij)
p,q
i=1,j=1 of

independent variables xij. The derivative of Φ with respect to X is given by

∂Φ

∂X
=

∂Φ
∂x11

∂Φ
∂x12

. . . ∂Φ
∂x1q

∂Φ
∂x21

∂Φ
∂x22

. . . ∂Φ
∂x2q

...
...

. . .
...

∂Φ
∂xp1

∂Φ
∂xp2

. . . ∂Φ
∂xpq

 .

Unfortunately, exact equivalents of the familiar chain rule and the product rule from multivari-
ate calculus do not persist when dealing with matrix-valued functions. Even so, the following
proposition is essential in algebraically calculating the Sampson distance's derivative.

Proposition 4.6. Let X be a p × q matrix of independent variables. Let A ∈ kr×p, B ∈ kq×q
and C ∈ kp×r. Then the following equality holds:

∂ tr
(
ATXBXTC

)
∂X

= CATXB+ACTXBT

Proof. The product rule does not apply to our scalar-by-matrix derivative. However, it does apply
to di�erential forms d (cf. Minka [26, p. 2]) and it is possible to convert from the di�erential to
the derivative form. According to Giles [20, p. 4], the equalities

d(f(X) · g(X)) = d(f(X)) · g(X) + f(X) · d(g(X)), d(B) = 0 for B not depending on X

and d(f(X) + g(X)) = d(f(X)) + d(g(X))

apply to scalar functions f and g. Moreover, a di�erential expression dy = tr (Bd(X)) can be
transformed to

∂y

∂X
= BT

according to Minka [26, p. 4]. Any di�erential operator commutes with transpositions and a
matrix' trace, the latter of which is invariant under matrix transposition, cyclic permutation and
commutes with addition. All of these basic properties can be looked up in Petersen and Pedersen
[3, pp. 6-8]. With all of this in mind, we can form the following chain of equalities:

d
(
tr
(
ATXBXTC

))
= tr

(
d
(
ATXBXTC

))
= tr

(
d
(
ATXB

)
XTC+ATXBd

(
XTC

))
= tr

(
d
(
ATXB

)
XTC

)
+ tr

(
ATXBd

(
XTC

))
= tr

(
CATd(X)BXT

)
+ tr

(
CATXBd(X)T

)
= tr

(
BXTCATd(X)

)
+ tr

((
CATXBd(X)T

)T)
= tr

(
BXTCATd(X) +BTXTACTd(X)

)
= tr

((
BXTCAT +BTXTACT

)
d(X)

)
.

Together with the conversion rule for di�erential forms, the equations demonstrate

∂ tr
(
ATXBXTC

)
∂X

= ACTXBT +CATXB,

concluding the proof.

Ultimately, we can express the Sampson distance's derivative in a closed form, as νPn(zi) ∈ k(n+D
n),

J (Q)(zi)[J (Q)(zi)]
T ∈ km×m and the coe�cient matrix C is a

(
n+D
n

)
×m matrix of independent

variables. Hence, Proposition 4.6 applies and the Sampson distance LS(C; Ω, n)'s derivative has

26

the form

∂LS(C; Ω, n)

∂C
=

2

N

N∑
i=1

νPn(zi)
(
νPn(zi)

TC
) (
J (Q)(zi)[J (Q)(zi)]

T
)†
.

It needs to be stressed that the product of jacobians is symmetric by Proposition 3.7 and that
νPn(zi)ν

P
n(zi)

T is a
(
n+D
n

)
×
(
n+D
n

)
matrix. We use the associativity of matrix multiplication to

reduce the memory the algorithm occupies. If the jacobian J (Q)(zi) has a row rank de�ciency,
the variety V(Q) has a singularity in zi. Regardless, this phenomenon occurs with probability
0, if Q does not contain polynomials of degree at most 0. We can �lter out singular points from
Ω, while maintaining the model's expressiveness. This way, we can to assume that all sample
points zi are regular. This algorithm's �nal improvement enables it to run at reasonable speed.

4.5 Combatting the Current Over�tting

In the previous sections, we witnessed the development of the algorithm LearnVanishingIdeal

for learning vanishing ideals from noisy samples. Nonetheless, it still has issues; even after the
improvements discussed in Section 4.4. Among them is the struggle of over�tting, i.e. having
more parameters than can be justi�ed by the data. Currently, we are trying to learn m equations
of the same degree n. Our algorithm exploits the available parameters and potentially learns
a higher-degree variety than intended. Consequently, our algorithm presently learns the wrong
polynomials when the generators of I(V) have various degrees.

With this in mind, how can we make sense of the assumption that there are no polynomials of
degree strictly smaller than n vanishing on the samples in this general setting. After all, the
vanishing ideal of a variety generally contains generators of various degrees.

Figure 7: Sample points from the intersection of two unit spheres.

27

It seems reasonable to apply an approach similar to the recursive GPCA algorithm from Section
3.2, for example by �nding the smallest degree n that �ts the samples. However, a higher-
degree variety approximates the data points better and consequently has a smaller error. In
statistical literatur, this behavior is known as over�tting (cf. Dietterich [13]). When the degree
is su�ciently high, it is possible that the learned equations �t our data points perfectly, even in
the presence of noise. In particular, a line through the origin for each sample point (cf. Ma et
al. [24]) approximates the samples Ω well in any reasonable metric, though in most cases this
result is not desirable.

To understand why over�tting occurs, it should be stressed that there is an inherent ambiguity in
our problem to �nd vanishing equations. Assume we are given sample points from the intersection
of two unit spheres in R3 whose center points are 1 apart, as depicted in Figure 7. The result of
the two spheres' intersection is a degree 2 curve that can be obtained from the intersection of a
plane with a quadric.

Even though both, the intersection of two quadrics and a quadric with a plane, yield equivalent
vanishing loci, the presence of noise complicates things. Finding a plane and a quadric leads to
a degree 2 curve, which is the desired result. Despite that, using two quadrics our algorithm
LearnVanishingIdeal returns a degree 4 curve. As discussed earlier, this space curve improves
the sample points' approximation. However, this is not the vanishing locus we are looking for, as
a variety of degree 4 can contain two irreducible components of individual degree 2. Our method
LearnVanishingIdeal learns such a variety, as depicted in Figure 8.

Figure 8: Vanishing set learned by LearnVanishingIdeal from the samples in Figure 7.

Since the current search space allows for two quadrics, our algorithm �nds two such polynomials.
To prevent that, we provide the algorithm with an increasing sequence n1 ≤ · · · ≤ nm of the
vanishing ideal I(V)'s generators' degrees. Correspondingly, we calculate the amount of times
mi each degree appears. After potentially embedding the data points Ω into projective space,
for each unique degree ni we solve the eigenvalue problem (12). This involves using the Veronese
embedding νni(x) of degree ni. The results of this approach aremi coe�cient vectors cj of length(
ni+D−1

ni

)
, presenting the polynomial vector Q in a di�erent way:

Q(x) =
(
cT1 ν

P
n1

(x), . . . , cTmν
P
nm

(x)
)
.

28

Deriving this vector of polynomials Q, computes its jacobian:

J (Q)(x) =

 cT1∇νPn1
(x)

...
cTm∇νPnm

(x)

 ∈ km×D.
Abbreviating the list of coe�cient vectors by C = (c1, . . . , cm) and the corresponding list of
degrees by n = (n1, . . . , nm) presents an alternative formulation of the Sampson distance:

LaS(C; Ω,n) =
1

N

N∑
i=1

Q(zi)
T
(
J (Q)(zi)[J (Q)(zi)]

T
)†
Q(zi).

Algebraically, the derivative of the adjusted Sampson distance LaS is

∂LaS(C; Ω,n)

∂ci
=

2

N

N∑
j=1

Q(zj)
T ·
(
J (Q)(zj)[J (Q)(zj)]

T
)† ∂Q(zj)

∂ci

=
2

N

N∑
j=1

Q(zj)
T ·
(
J (Q)(zj)[J (Q)(zj)]

T
)† ∂cT1 ν

P
n1

(zj) / ∂ci
...

∂cTm∇νPnm
(zj) / ∂ci

=

2

N

N∑
j=1

(
Q(zj)

T ·
(
J (Q)(zj)[J (Q)(zj)]

T
)†) · Ξni(zj)

T ,

with

Ξni(zj) =
(
0, . . . , 0 , νPni

(zj), 0, . . . , 0
)
∈ k

(ni+D−1
ni

)×m
.

The equalities involve results from multivariate calculus, such as the product rule and the asso-
ciativity of matrix multiplication. In such manner, the algorithm's memory usage is enhanced.
In the implementation of LearnVanishingIdeal, we can use the derivatives of LaS(C; Ω,n) to
calculate a gradient descent step for the nonlinear optimization problem (10) via

Ct+1 = Ct − γt

(
∂LaS(Ct; Ω,n)

∂c1

T

, . . . ,
∂LaS(Ct; Ω,n)

∂cm

T
)
.

The parameter γt is adaptively chosen with respect to the loss function's stagnation. Bear in
mind that C is a list of vectors and should not be considered to be a matrix. Naturally, embedding
both ci and νni(zj) into the top-dimensional search space where cm lives, C becomes a matrix.
This choice is reasonable in the implementation, as it simpli�es computations.

4.6 Comparison of the Presented Methods

According to Chapter 4, the newly proposed LearnVanishingIdeal performs at least as well
as comparable methods for �nding polynomial equations from point clouds. To quantify this
assertion, several error functions are discussed in Section 4.2. Primarily, the mean euclidian
distance, calculated by solving a polynomial system, is an objective measure for the approxima-
tion's quality. As secondary measures, the Sampson distance, the mean squared error and the
algorithm's runtime are computed. Denote by LVI_List the method that uses a list of degrees
to approximate generators of the vanishing ideal (cf. Section 4.5), while LVI_Max uses only the
maximal occuring degree (cf. Section 4.4).

29

Example 4.7. Our �rst example comes from Section 4.3. It is displayed in Figure 5 how the
method FindEquations reacts to noise. Assume we are given 1517 samples from the nodal curve
V1 with vanishing ideal 〈y2−x3−x2〉. Isotropic Gaussian noise in a range of 6% to 20% is added.
In this case, the ideal can be generated with only one polynomial. Therefore, both LVI methods
are equivalent. For a comparison between these algorithms and FindEquations from Breiding et
al. [5], consider Figure 9. The methods LVI_List and LVI_Max are equivalent in this instance,
because I(V1) can be generated by one polynomial.

Figure 9: Comparison of FindEquations (top row) and LearnVanishingIdeal (bottom row).

We do not begin with 0% noise as in Section 4.1, because FindEquations only starts to break
down at around 6% noise. As mentioned, we can expect our method to perform at least as well
as FindEquations by construction. In the �rst three pictures of the bottom row it becomes
visible that the curve is phenomenally close to the samples. Even the singularity of the nodal
curve is recovered by the algorithm LearnVanishingIdeal. Especially when compared to the
performance of FindEquations' curves in the top row, our method's advantages become clear.

Nevertheless, our method starts to disintegrate between 13% and 16% of noise. The learned
curve is still adequately close to both the nodal curve and the samples. Outside the quadrangle
[−3, 3]2 the samples lie in, the curve is not recovered well. At 20% noise, LearnVanishingIdeal
is no longer capable of retrieving the geometry of the nodal curve. Only its two rays are recov-
ered. However, with this much noise it becomes increasingly di�cult to recognize patterns in the
samples, as the correlation of the data decreases. Table 1 presents a survey how the methods
perform with 7% of noise. The respective numbers are rounded to three signi�cant digits.

It can be observed that FindEquations outperforms our method LearnVanishingIdeal in two
categories, namely the mean squared error and the consumed time. Two factors play a role in
this: Firstly, our implementation of FindEquations is based on the singular value decompo-
sition which is biased towards a least squares fomulation. Secondly, our method is inherently
more complex than the method FindEquations. Using a regular computer, our method takes
signi�cantly longer to terminate than comparable methods. Nonetheless, the goal of this thesis is
to �nd a robust algorithm. While desirable, a complexity-focused optimization of the presented
method is reserved for future work.

30

FindEquations LearnVanishingIdeal

Mean Squared Error 0.0158 0.0235

Sampson Distance 0.0293 0.00432

Mean Distance 0.146 0.0542

Consumed Time 0.039s 6.28s

Table 1: Comparison of the algorithms using the vanishing ideal 〈y2 − x3 − x2〉.

Regardless, Table 1 also comprises desirable results. As expected, LearnVanishingIdeal per-
forms better in the Sampson distance, since it optimizes this loss function. Most importantly, it
performs signi�cantly better in the mean distance from the variety.

Example 4.8. Increase the ambient space's dimension by 1 and treat a reducible and discon-
nected variety V2, generated by the intersection of a plane with two separated spheres. The
example illustrates that the irreducibility of the variety is insigni�cant for our algorithm. The
corresponding vanishing ideal is given by

I(V2) =
(
〈y + z, (x− 2)2 + y2 + z2 − 1〉 ∩ 〈y + z, (x+ 2)2 + y2 + z2 − 1

〉
=

〈
y + z,

(
x− 2)2 + y2 + z2 − 1

)
·
(
(x+ 2)2 + y2 + z2 − 1

)〉
.

We sample 560 points from V2 and corrupt them with 3% Gaussian noise. The resulting data
points can be seen in Figure 10.

Figure 10: Samples from the intersection of two spheres and a plane.

The algorithms' performance with values rounded to 3 signi�cant digits can be seen in Table 2.
Once more, the LVI methods are signi�cantly slower than the algorithm FindEquations. Nat-
urally, this is an issue that needs to be dealt with. Yet, the primary goal is to reach maximum
accuracy. We can deduce from Table 2 that the SVD-based method FindEquations performs

31

FindEquations LVI_List LVI_Max

Mean Squared Error 8.0 · 10−10 8.74 · 10−4 1.01 · 10−7

Sampson Distance 2.44 0.00556 0.00512

Mean Distance 0.352 0.0391 0.0344

Consumed Time 0.037s 49.0s 51.6s

Table 2: Comparison of the algorithms performed on samples from V2.

better in the mean squared error. However, our analysis in Section 3.3 shows that learning a
variety with high curvature results in comparatively farther apart contour lines in the mean
squared error's plot. As a consequence, strongly curved varieties have a smaller squared error on
many points than varieties with less curvature. Therefore, in optimizing a least squares problem,
the mean squared error is biased towards SVD and hence FindEquations.

More importantly, in both the Sampson distance and the mean distance our methods perform
at least an order of magnitude better than FindEquations. The di�erences between the algo-
rithms LVI_List and LVI_Max is negligible here, with the latter performing slightly better than
LVI_List. An explanation for this behavior is quickly found. LVI_Max has more parameters
available for optimization. Especially, when compared to LVI_List that looks for the true de-
grees of the vanishing ideal's generators, over�tting is an inevitable consequence. For this reason,
let us consider Figure 11. In the top left corner, the sample points used in the algorithms are
visualized. The other three images belong to the equations the corresponding algorithm learns.

Figure 11: Comparative Plots of the di�erent algorithms trying to learn I(V2).

We can deduce that LVI_Max learns more irreducible components than expected, con�rming
previous observations. It is remarkable that FindEquations performs poorly in approximating
the given data. Only due to its high curvature and amount of learned components is it able to
perform well in the mean squared error. The results illustrate that LVI_List is the preferred
method and should therefore be considered when taking the ideas from this thesis further.

32

Example 4.9. As a �nal example, consider the 2 × 3 matrices of rank at most 1, denoted by
V2×3. This variety is de�ned by the three 2×2 minors' singularity of a 2×3 matrix of independent
variables. The variety V2×3 has dimension 3 and degree 3, when embedded into P5

R. Equivalently,
it be realized as the Segre embedding σ1,2 of P1

R× P2
R (cf. Gathmann [18, p. 60]), because of the

algebraic relations that are satis�ed in the image [x0y0 : x0y1 : x0y2 : x1y0 : x1y1 : x1y2] of σ1,2.
We use 200 sample points from a data set that is provided in Breiding et al. [5] and corrupt
them with 2% Gaussian noise. The result that LearnVanishingIdeal yields in k[x1, . . . , x6] is
the ideal

I = 〈 −0.61x1x4 + 0.17x1x4 + 0.61x2x3 − 0.17x2x5 − 0.32x3x6 + 0.32x4x5,

−0.35x1x4 − 0.46x1x6 + 0.35x2x3 + 0.46x2x5 + 0.41x3x6 − 0.41x4x5,

0.11x1x4 − 0.51x1x6 − 0.11x2x3 + 0.51x2x5 − 0.48x3x6 + 0.48x4x5 〉

with its coe�cients rounded to 2 digits. Conversely, FindEquations outputs

J = 〈 −0.47x1x4 + 0.29x1x6 + 0.47x2x3 − 0.28x2x5 − 0.45x3x6 + 0.44x4x5,

0.49x1x4 + 0.45x1x6 − 0.5x2x3 − 0.44x2x5 + 0.01x2x6 − 0.24x3x6 + 0.24x4x5,

−0.18x1x4 + 0.471x6 + 0.18x2x3 − 0.47x2x5 + 0.01x2x6 + 0.49x3x6 − 0.49x4x5 〉

with the coe�cients rounded to 2 digits again. Finally, the true vanishing ideal of V2×3 is

I(V2×3) = 〈 x2x3 − x1x4, x2x5 − x1x6, x4x5 − x3x6 〉.

It can be checked using a computer algebra system such as Singular (cf. Decker et al. [11])
that I and I(V2×3) agree. Even after omitting the monomial x2x6 from the generators, J is a
di�erent ideal. The dimension of J is 2, while its degree is 4. Accordingly, J geometrically does
not represent I(V2×3), con�rmed by the experimental results in Table 3.

FindEquations LearnVanishingIdeal

Mean Squared Error 0.00165 0.00260

Sampson Distance 0.0936 0.00108

Mean Distance 0.456 0.298

Consumed Time 0.57s 11.8s

Table 3: Experimental results on V2×3.

Our methods LVI_List and LVI_Max are equivalent in this instance, as the three generators of
I(V2×3) all have degree 2. The mean distance does not have a high validity in this setting,
because it is calculated in R6. In P5

R however, there is an equivalence relation up to scaling,
since the lines in R6 are equivalent in P5

R. Consequently, the error is higher than usual for both
compared algorithms. Breiding et al. [5] propose the Fubini distance to cope with this issue. For
the sake of brevity, it is not introduced in this thesis.

The Sampson distance is a �rst-order approximation of the euclidian distance, as discussed in
Chapter 3.3. The method LearnVanishingIdeal outperforms its counterpart in this category.
Since the Sampson distance accounts for projective data by using the Veronese embedding νn as
monomial vector, this error function is a good measure for the algorithms' quality in a projective
setting.

33

4.7 Limitations of the Algorithm LearnVanishingIdeal

Example 4.10. Another interesting instance of the LVI algorithm arises when dealing with a
variety, where Bézout's Theorem 2.8 does not hold. For this reason, consider

V3 = V(〈x2 + y2 − z2 − w2〉) ∩ V(〈x2 + y2 − z2 − (x+ 2z) · w〉)
= V(〈x2 + y2 − z2 − w2, x2 + y2 − z2 − (x+ 2z) · w〉) ⊂ P3

R.

In the a�ne chart {w = 1} ∼= A3
R, this variety is an ellipse. As we have already encountered the

intersection of two spheres in Section 4.5, this ellipse is not depicted here. In contrast, in the
plane at in�nity {w = 0} ∼= P2

R, the two hypersurfaces whose intersection is V3 share a common,
positive-dimensional component, namely the cone

V(〈x2 + y2 − z2〉) ⊂ P2
R.

Since the two hypersurfaces share a positive-dimensional component, Bézout's theorem does not
hold. Given 454 samples from this a�ne variety, corrupted with 6% Gaussian noise, the involved
algorithms produce curves, whose a�ne chart {w = 1} is display in Figure 12.

Figure 12: Comparative plots of the algorithms' di�erent results for samples from V3.

The algorithms LVI_List and LVI_Max are equivalent in this example, since we assume two gen-
erators of degree 2. Recall that in Chapter 4.5, intending to learn two degree 2 generators results
in our algorithm �nding an a�ne variety consisting of two irreducible components. The cone
in the plane at in�nity {w = 0} is not replicated, implying that the projective structure of the
variety V3 is not reproduced by either algorithm. As an alternative measure for quality, consider
Table 4. The algorithms' errors and runtime are rounded to three signi�cant digits.

FindEquations LearnVanishingIdeal

Mean Squared Error 0.00225 0.00425

Sampson Distance 0.199 0.00432

Mean Distance 0.487 0.0834

Consumed Time 0.006s 13.5s

Table 4: Quantitative results of the algorithms on samples from V3.

34

Error-wise, our method consistently performs an order of magnitude better than FindEquations,
which is in line with our previous observations. The time LearnVanishingIdeal takes is accept-
able, although taking drastically longer than the method it is compared to. The bottom line of
the example is that it does not su�ce to sample from an a�ne patch, when we want to recover
the underlying variety's projective geometry.

Example 4.11. As a �nal example, take 388 sample points from the transversal union of a
parabolic curve and a sphere. Again, the Bézout bound does not hold. 5% Gaussian noise is
induced. We denote this variety by V4. It can be realized as the intersection

V4 = V(〈(x2 + y2 + z2 − 1) · z〉) ∩ V(〈(x2 + y2 + z2 − 1) · (y + x2 − 2)〉).

Consequently, the corresponding vanishing ideal is given by

I(V4) = 〈(x2 + y2 + z2 − 1) · z, (x2 + y2 + z2 − 1) · (y − x2 + 2)〉

and the vanishing locus can be seen in Figure 13, alongside the mentioned samples.

Figure 13: The variety V4, whose degree is strictly below the Bézout bound.

The variety V4 has dimension 2 and degree 4. However, the Bézout bound is 12 in this case.
One may wonder, how this discrepancy a�ects our algorithm. To answer this question, consider
Table 5.

FindEquations LVI_List LVI_Max

Mean Squared Error 1.48 · 10−3 8.46 · 10−3 4.48 · 10−3

Sampson Distance 0.0304 0.0120 0.0180

Mean Distance 0.140 0.170 0.135

Consumed Time 0.074s 49.0s 55.6s

Table 5: Algorithmic comparison on samples from V4.

35

Containing the errors arising from LearnVanishingIdeal's application to the data points, Table
5 reveals that the algorithm's approximation is less than excellent. While the points are relatively
close to the original variety, the mean distance of each method is comparatively large. Certainly,
all errors are larger than expected when consulting Figure 13. To understand, how to interpret
said behavior, consider Figure 14. In this picture, the image in the top left corner depicts the
sample points. The method LVI_List from Section 4.5, our standard approach LVI_Max from
Section 4.4 and Findequations from Section 4.1 are labelled accordingly.

Figure 14: Visual comparison of the methods' results acting on samples from V4.

It immediately becomes clear what went wrong. Our algorithm learns a curve, because it is given
the freedom of 2 equations for a variety of codimension 1. Apparently, the method interprets the
instruction to �nd 2 equations as �nding a variety of codimension 2. Recall that our assumption
throughout the thesis is that the underlying variety is a complete intersection. Here we see why
it is necessary. All discussed algorithms behave poorly on the variety V3. Nevertheless, Figure
14 indicates that LVI_List behaves best among them, which is coherent with our previous ob-
servations.

Unfortunately, the results in Table 5 do not re�ect the above claim. The compared methods' per-
formance does not di�er signi�cantly, resulting in a di�erent optimal method for each compared
category. The degree of the curves that LVI_Max and FindEquations learn is 16, while LVI_List
learns a curve of degree 12. Having more parameters available to �t a curve to a variety of a
higher dimension, puts the resulting errors in perspective.

Ma et al. [24] discusses several techniques to cope with the problem of di�erent-dimensional
irreducible components. One of them is the segmentation of data points into equidimensional
subsets by recursive application of the generalized principal component analysis. In the equidi-
mensional case, our method has proven to work well, making us believe that through future
research the assumption that the underlying variety is a complete intersection can be omitted.

36

5 The Cayley-Bacharach Theorem

In this section we want to shine a light on a theoretical aspect of the algorithm we propose.
Speci�cally, any cubic passing through 8 distinct points from the intersection of two cubics con-
taining exactly 9 points, also passes through the remaining ninth point. This is a classic result,
which is generally attributed to Cayley and Bacharach. However, they prove a generalization
of this theorem. The more instrinsic formulation that is stated above is by Michel Chasles (cf.
Plaumann [31, p. 14]).

The ultimate goal is to understand, if the algorithm respects this theorem. Inherently, when
looking for a best-approximation that passes through 8 distinct points from the discrete intersec-
tion of two cubics inside the vector space of all cubics in P2

R or P2
C, the curve our algorithm learns

has to pass through the ninth. Otherwise, it contradicts Chasles' theorem. In the following, we
pick R or C and denote by P2 the corresponding two-dimensional projective space.

First, we introduce terminology. A set of points {p1, . . . , pm} ⊂ P2 imposes ` conditions on poly-
nomials of degree d, if the subspace of polynomials vanishing on {p1, . . . , pm} has codimension
`. Incidentally, the vector space of degree d homogeneous polynomials in 3 variables has dimen-
sion

(
d+2
d

)
. Denote the number of conditions that are imposed by {p1, . . . , pm} on the degree d

polynomials by h{p1,...,pm}(d) and call it the Hilbert function. We say that {p1, . . . , pm} fails to
impose independent conditions on degree d polynomials, if h{p1,...,pm}(d) < m. For the proof of
Chasles' theorem, we need a technical lemma from Plaumann [31, p. 16] that is stated below.

Lemma 5.1. Let Γ = {p1, . . . , pn} ⊂ P2 be a collection of n ≤ 2d+ 2 distinct points. The points
in Γ fail to impose independent conditions on curves of degree d if and only if either d+ 2 of the
points in Γ are colinear or n = 2d+ 2 and additionally, Γ is contained in a conic.

Proof. The proof of this lemma can be found in Plaumann [31, p. 16].

This enables us to state Chasles' theorem.

Theorem 5.2 (Chasles [9]). Let X1, X2 be two cubic curves in P2 meeting in Γ = {p1, . . . , p9},
a set of 9 distinct points. Then any cubic passing through an arbitrary subset of eight points
Γ′ = {p1, . . . , p8} ⊂ Γ also passes through p9.

Proof. A cubic curve denotes a variety of dimension 1 and degree 3. Notice that Bézout's
theorem 2.8 guarantees that the maximal number of intersection points of two such cubic curves
is 9. Assume Γ is a set of 9 points, de�ned by the intersection of X1 and X2. Let Γ′ be any
8-element subset of Γ. We need to show that Γ and Γ′ impose the same number of conditions
on planar cubic curves. As a result, the same polynomials of degree 3 vanish on both sets.
Intuitively, we expect that Γ imposes 9 conditions on the space of cubic curves. Nevertheless, we
know two linearly independent polynomials of degree 3 vanishing on Γ: The de�ning equations
f1 and f2 of X1 and X2. These polynomials are linearly independent, because if there was a
linear relation f1 = λf2 for λ ∈ k, then

X1 = V(f1) = V(f2) = X2.

This is a contradiction to the assumption that the cubics X1 and X2 meet in exactly 9 points,
because the underlying �eld is in�nite and so are X1 and X2. Since there are two linear inde-
pendent polynomials vanishing on Γ′, hΓ(3) ≤ 8. To conclude the proof, we need to show that
hΓ′(3) ≥ 8. Contrary to that, assume hΓ′(3) < 8. By Lemma 5.1, this implies that either 5 of
the points are colinear or Γ′ is contained in a conic.

For the �rst part of this statement, note that by Bézout's theorem a line ` intersected with a
cubic in relative general position contains at most 3 points. Therefore, the cubic must contain

37

the line `, as they supposedly intersect in 5 points. Following this line of argumentation, both,
X1 and X2 need to contain `, as they contain Γ′. Consequently, X1 ∩X2 ⊃ `, contradicting the
�niteness of X1 ∩X2.

In the case that Γ′ is contained in a conic, Bézout's theorem guarantees that this conic C inter-
sected with either cubic X1 or X2 has at most 6 points of intersection. At least, when X1 and
X2 lie in relative general position. However, Γ′ cotains 8 distinct points which is a contradiction
to the relative generality of the curves. Hence, both cubics must contain a positive-dimensional
component of the conic C. As the intersection X1 ∩X2 is �nite by assumption, no component
of C can be contained in X1 ∩ X2. The only option left to consider is that C consists of two
distinct lines: C = `1 ∪ `2 with `1 ⊂ X1 and `2 ⊂ X2. By assumption, both X1 ∩X2 and `1 ∪ `2
contain Γ′. This is impossible, as the intersection of two distinct lines contains at most 1 point.
This demonstrates that hΓ′ = 8, concluding the proof.

According to Eisenbud et al. [15, p. 307] a generalization of Chasles' theorem is available. The
following statement is a version of the famous theorem by Cayley and Bacharach.

Theorem 5.3 (Cayley-Bacharach). Let X1, X2 ⊂ P2 be curves of degrees d1 and d2 respectively,
meeting in a collection of d1d2 distinct points Γ = {p1, . . . , pd1d2}. If X ⊂ P2 is any curve of
degree d1 + d2 − 3 containing all but one point of Γ, then X contains all of Γ.

More generally, suppose that Γ is the disjoint union of two subsets Γ′ and Γ′′. Then,

hΓ(m) = hΓ′(m)− hΓ′′(d1 + d2 − 3−m) + |Γ′′|

holds for any m ≤ d1 + d2 − 3.

Proof. The theorem's proof can be found in Eisenbud et al. [15, pp. 307-308]

To understand, how the algorithm LearnVanishingIdeal copes with Chasles' Theorem 5.2, we
consider an example. We generate the set of 9 points Γ by the two equations f1 = x(x−z)(x+z)
and f2 = y(y − z)(y + z) in the coordinate ring C[x, y, z] of P2

C. The points of intersection are

Γ = {[1 : 0 : 1], [0 : 0 : 1], [−1 : 0 : 1], [1 : 1 : 1], [0 : 1 : 1], [−1 : 1 : 1],

[1 : −1 : 1], [0 : −1 : 1], [−1 : −1 : 1]}

Conveniently, Γ lies in the a�ne patch {z 6= 0} of P2
C and all points are real. The situation is

displayed in Figure 15. We choose p9 = [−1 : −1 : 1] and de�ne Γ′ = Γ \ {p9}. Chasles' theorem
predicts that any cubic going through the 8 points in Γ′ also passes through p9. In terms of our
algorithm, we want to insert Γ′ into the Sampson distance and equate the outcome to 0. This
way, the resulting polynomial is optimal. Subsequently, we derive a coe�cient vector w ∈ C10

with Q = wT νP3 (x, y, z) vanishing on Γ′. In this case, the Sampson distance LS(w; Γ′) yields an
equivalent result to the mean squared error LMS(w; Γ′), as it only introduces a weighting.

Proposition 5.4. If a polynomial q's gradient is nonsingular on Ω = {z1, . . . , zN}, then q
vanishes on Ω in the mean squared error if and only if it vanishes in the Sampson distance.

Proof. Let q be an arbitrary polynomial and let Ω = {z1, . . . , zN} be a set of points. Assume
that the Sampson distance is well-de�ned, meaning that the gradient ∇q(zi) 6= 0 does not vanish
for any zi ∈ Ω. Equivalently, V(q) does not have singularities that coincide with Ω. As a norm is
positive-de�nite, a polynomial vanishes on Ω, if and only if each summand of the mean squared
error 1

N

∑N
i=1 ||q(zi)||2 is zero. This is still the case, when we multiply each summand with a

non-zero constant. Since the gradient of q is not singular in Ω, each summand of the Sampson
distance is also 0, implying that the entire sum is 0. The proof of the other implication is
analogous, because ||∇q(zi)||2 > 0 by assumption.

38

Figure 15: Intersection of cubics f1 (vertical lines) and f2 (horizontal lines).

Using Proposition 5.4, we can choose the error function among LMS and LSD with simpler
output. Picking the mean squared error results in the loss function

LMS(w; Γ′) =
1

8

8∑
i=1

||Q(pi;w)||2 =
1

8

(
5w2

1 + 2w1w2 − 2w1w3 + 6w1w4 + 2w1w5 + . . .
)

= 0.

We want the polynomial our method produces to be the loss function's optimum. As a con-
sequence, it is additionally required that ∇wLMS(w; Γ′) = 0. As di�erentiation of a quadric
polynomial produces linear forms, this equality leads to a linear system Aw = 0 for a coe�cient
matrix A. Thus, the rank of A is 8 with a basis of A's kernel given by the two coe�cient vectors of
f1 and f2. It follows that the only polynomials vanishing on Γ′ are given by linear combinations
of f1 and f2. Hence, for any linear combination g of f1 and f2 it holds that

g(p9) = λf1(p9) + µf2(p9) = λ · 0 + µ · 0 = 0,

implying that any cubic passing through Γ′ also passes through p9. How LearnVanishingIdeal

deals with Γ′ as input is displayed in Figure 16 on the next page with the excluded point point p9

displayed as a star. It is illustrated that our algorithm implicitly learns the conditions imposed
by two intersecting cubics.

More generally, we want to prove that our algorithm has this output for an arrangement of 9
distinct points Γ = {p1, . . . , p9} from the intersection of two arbitrary cubics in P2. In doing
so, we rewrite the loss function LMS(w,Γ′) to an eigenvalue problem for any 8 element subset
Γ′ = {p1, . . . , p8} of Γ. This is already executed in the proof of Proposition 3.8, creating the
eigenvalue problem

A(Γ′) · w = 0 for A(Γ′) =
1

8

8∑
i=1

νP3 (pi)ν
P
3 (pi)

T ∈ C10×10. (13)

Notice that this formulation only captures the loss function's LMS global minima. The following
proposition resolves this discrepancy.

Proposition 5.5. w ∈ C10 solves the eigenvalue problem (13) if and only if Q(x;w) = wT ·νP3 (x)
minimizes the loss function LMS(w; Γ′) = 1

8

∑8
i=1 ||Q(pi;w)||2.

39

Figure 16: The cubic LearnVanishingIdeal learned with respect to Γ′ passing through Γ.

Proof. Take any c ∈ ker (A(Γ′)). Then,

0 = cT ·A(Γ′) · c =
1

8

8∑
i=1

cT · νP3 (pi)ν
P
3 (pi)

T · c = LMS(c; Γ′) (14)

for Q(x) = cT νP3 (x) = νP3 (x)T c. As ||Q(pi)|| ≥ 0 for all pi ∈ P2, c minimizes LMS(w; Γ′).

For the other implication, assume that Q(x) = νP3 (x)T c minimizes LMS(w; Γ′). The equations
(14) demonstrate that LMS(w; Γ′) is a quadratic optimization problem. Moreover, the matrix
A(Γ′) = 1

8

∑8
i=1 ν

P
3 (pi)ν

P
3 (pi)

T is symmetric positive semide�nite. Burke's Theorem 3.2 [17,
pp. 28-29] implies that every local minimum of LMS(w; Γ) is global. Hence, it su�ces to show
that LMS(c; Γ) = 0 is possible. Theorem 3.2 in Burke [17, pp. 28-29] proves this by demonstrating
that each solution to A(Γ′)w = 0 is a local minimum of LMS(w; Γ′), concluding the proof.

The formulation of the eigenvalue problem (13) and Proposition 5.5 allow us to assure that our
algorithm abides by the Cayley-Bacharach theorem.

Theorem 5.6. Assume that two cubic plane curves X1 and X2 meet in 9 distinct points Γ =
{p1, . . . , p9} and let Γ′ = {p1, . . . , p8} ⊂ Γ. Then, the coe�cient vector w appears as a solution
of (13) if and only if w yields a cubic q(x, y, z) = wT νP3 (x, y, z) that vanishes on Γ.

Proof. Let w ∈ C10 correspond to a polynomial q(x, y, z) = wT νP3 (x, y, z) = νP3 (x, y, z)Tw that
vanishes on Γ. As Γ′ ⊂ Γ and q|Γ = 0, w satis�es the eigenvalue problem (13) by construction.

For the other implication, let w solve the eigenvalue problem (13). By Proposition 5.5,

LMS(Γ′;w) =
1

8

8∑
i=1

||q(pi;w)||2 = 0

40

for the polynomial q(x;w) = wT νP3 (x). As any norm is nonnegative, each summand of LMS(Γ′;w)
must vanish. Consequently, q vanishes on Γ′ by the norm's de�niteness. Chasles Theorem 5.2
then implies that q vanishes on Γ.

Assume that our algorithm LearnVanishingIdeal is presented with an 8-element subset Γ′ of
Γ = {p1, . . . , p9} ⊂ P2 as training set. Again, Γ is given by the intersection of two plane cubics.
If any point p ∈ Γ corresponded to a singularity of either curve, the intersection's multiplicity
in p would be at least 2 by Corollary 2.24 in Gathmann [19, p. 17]. Two cubics intersect in
at most 9 or in�nitely many points by Bézout's theorem, even when counting multiplicities (cf.
Gathmann [19, p. 31]). Hence, the cardinality of Γ cannot be 9, as one point is counted at least
twice. This contradicts our assumption, so Γ does not contain a singularity of either cubic. As
a result, the combination of Proposition 5.4, Proposition 5.5 and Theorem 5.6 guarantees that
our algorithm correctly identi�es the polynomials that vanish on Γ. Consequently, our algorithm
implicitly learns the rule that is prescribed by the Cayley-Bacharach theorem.

41

6 Conclusion and Future Work

6.1 Conclusion

Numerical algebraic geometers try to infer generators of a variety's vanishing ideal from a point
cloud. In doing so, they want to preserve the topological and geometric structure of the original
vanishing locus. While there are methods available to �nd generators in the noise-free case, the
introduction of noise to the data points complicates this undertaking.

As a solution, this thesis proposes the LearnVanishingIdeal algorithm for learning generators
of a complete intersection V 's vanishing ideal from potentially noisy data points Ω. After in-
troducing the notion of a�ne and projective varieties and corresponding properties such as a
variety's dimension and degree, we can present the generalized principal component analysis as
our method's foundation. Knowing the participating linear spaces' number and dimension, this
algorithm aims at segmenting sample points from subspace arrangements. A recursive formula-
tion makes it possible to relax the assumption that the involved dimensions are known. In the
presence of noise, statistical techniques depending on minimizing the distance from the sample
points to the learned variety provides meaningful results. A di�erent approach to learning poly-
nomials vanishing on point clouds is given by the algorithm FindEquations. The evaluation of a
�nite set of monomialsM in Ω creates the multivariate Vandermonde matrix. IfM is chosen well
enough, its kernel generates the vector space I(V) ∩ M. Nevertheless, this approach is prone to
perturbations. As a result, reasonable adjustments are necessary. By establishing several error
functions, the approximation's quality can be quanti�ed. The application of statistical techniques
previously applied in the generalized principal component analysis leads to the implementation
of LearnVanishingIdeal. In the process, knowledge about the variety's dimension and the
maximal occuring degree among a minimum generating set is assumed. Immediately, variations
are proposed that enhance the algorithm's accuracy and complexity. Nonetheless, over�tting
remains an issue. By choosing an approach that considers the individual degrees of a minimum
generating set of V 's vanishing ideal, over�tting is reduced. Both, the method that takes only
the maximal occuring degree and the method that takes all degrees as input are evaluated in
several examples. They exhibit good results, especially when compared to FindEquations. Fur-
ther experiments indicate it is essential that the underlying variety is a complete intersection.
In other circumstances, the method LearnVanishingIdeal does not work reliably. As a �nal
remark, the algorithm satis�es the conditions imposed by the Cayley-Bacharach theorem on the
intersection of two planar cubics.

The algorithm proposed in this thesis generalizes the methods for subspace arrangements by Ma
et al. to algebraic varieties. A clever idea by Sampson transforms the nonlinear optimization
problem to a quadratic optimization problem with quadratic constraints. By embedding the
sample points into projective space, previous issues are resolved. Assuming knowledge about the
generators' degrees makes it possible to reduce over�tting. With a few variations, this algorithm
works dependably for complete intersections. Finally, the algebraic calculation of derivatives
enhance the method's runtime.

6.2 Future Work

Under the thesis' assumptions, the algorithm LearnVanishingIdeal produces convincing results.
Unfortunately, real-world data at times does not provide knowledge of the generating equations'
degrees and the variety's dimension, suggesting that our assumptions are overly optimistic. Con-
sequently, another algorithm is needed for the respective data. For this reason, a method for
calculating the underlying variety's dimension from point samples has been proposed (cf. Breid-
ing et al. and Camastra [5, 8]). Consequently, we assume that the variety's dimension is known.
As previously mentioned, the variety our samples Ω come from is a complete intersection, so we

42

need to learn codimension-many equations, i.e. m = codim(V) = D − dim(V).

The only task we are left with is �nding the right degrees for our algorithm. We can start with
the variety's degree n = 1 and go through all possible combinations according to Bézout's theo-
rem. Immediately, this poses the question of when to stop looking. The error tends to decrease
with increasing degree, as the search space contains more parameters. In order to determine
when we are satis�ed with the result, many textbooks propose using a stopping criterion. One
such criterion arises as the prescription of a maximum degree. However, doing so might lead to
under�tting the data, if the algorithm is not provided with an educated guess for the underlying
variety's degree. Alternatively, another stopping criterion is progressing until the error does not
considerably decrease anymore. Even so, this stopping criterion is insu�cient for varieties. To
understand why, consider Figure 17 of data points from a parabola of degree 4 in R2.

Figure 17: Application of LearnVanishingIdeal to samples from the parabola y − x4 − x2 + 1.

We sampled 690 points from the variety with vanishing ideal 〈y − x4 − x2 + 1〉 and 5% Gaus-
sian noise. Afterwards, the method LearnVanishingIdeal is applied to the data points, using
a degree from 1 through 6. The resulting vanishing set is then plotted and labelled with the
corresponding degree and mean distance rounded to three signi�cant digits. Recall that the
mean distance is de�ned in Section 4.2, referring to the arithmetic mean of the distances from
the sample points to the learned variety. The error only signi�cantly changes when the curve's
degree is even. We suspect this is due to 2 dividing 4. However, further investigation is necessary
here. Another important observation to be made in Figure 17 is that it does not su�ce to sample
points in the bounded quadrangle [−3, 3]2. In degree 4, LearnVanishingIdeal �ts a bounded
variety in R2 to the samples, although the original variety is unbounded. At the moment, it

43

is su�cient to realize that all of these observations make it impracticable to �nd a stopping
criterion with these approaches. Taking stagnation of the mean distance as reference, a degree
2 curve is our best guess, underestimating the degree. Conversely, if we take a more sensitive
threshold for the stopping criterion, the algorithm may not terminate within the �rst 6 degrees,
corresponding to an overestimation of the degree. This fundamental tension deserves additional
attention in future work.

All the arguments above demonstrate that a sensible stopping criterion encompasses a measure
for the search space's complexity. This involves a déja-vu with a problem that is supposedly
already solved in Section 4.5: over�tting. It occurs in the form of learning a higher-degree vari-
ety than necessary when looking for a best-approximating degree. In statistical learning theory,
there are two famous approaches for model selection: information criteria (cf. James et al. [23,
p. 210-213]) and cross-validation (cf. James et al. [23, pp. 176-178]). On the one hand, informa-
tion criteria try to choose the best model by adding a term to the loss function that accounts for
the complexity of the search space. As a larger parameter space yields an approximation with
smaller error, the result is high variance. At least, if it contains the previous search spaces. A
solution can be found by penalizing an increasing coe�cient space's dimension. For instance,
this can be achieved by adding

LaS(C; Ω,n) +
σ2

N
·
m∑
i=1

(
ni +D

D

)
to the adjusted Sampson distance LaS from Section 4.5 with the isotropic Gaussian noise model's
variance σ2 and a con�guration of degrees n = (n1, . . . , nm). The added term is analogous to
the Akaike information criterion in Ma et al. [24], a famous model selection criterion. The sum
stretches over the dimensions of the equations' search spaces. As there are additional constraints
for the equations, the added term does not correctly represent the joint search space's dimension.
Nonetheless, it is an adequate approximation. If σ is known or we have an adequate approxima-
tion of it, this provides a reasonable stopping criterion: Assume we have found a variety with
degree d that approximates the data better than all preceding models with respect to the above
loss function. Let p be the smallest prime dividing d. If we do not �nd a model that �ts the
data better until degree p+ d, the process stops. Otherwise, the new best-approximating model
is used as baseline. For this to properly work, su�ciently many data points are necessary.

Model selection via cross-validation on the other hand can be realized by splitting the data into
three sets: a training set, a validation set and a test set. Our model learns equations from the
training data for a given degree con�guration of the underlying variety's generating equations.
It is then checked on the validation set, which con�guration has the smallest error with respect
to the previously regularized loss function. Finally, the performance of the best �tting models
is evaluated on the test set. While over�tting models tend to have a small error on the training
data, they usually perform poorly on the test data. Cross-validation exploits this behavior by
only using the error on the test set for choosing the best-approximating model. Potential im-
provements of this method are leave-one-out and k-fold cross-validation (cf. James et al. [23,
pp. 178-183]). Analogous to information criteria, cross-validation chooses the best among a range
of models. It can be used as supplement to information criteria, for example by choosing the
best model for a �xed degree d of the learned variety V(Q).

A powerful way to advance research in this regard is to use topological data analysis and similar
techniques to infer information about the degree of a variety. In doing so, a meaningful stopping
criterion for the model selection approach from above would be provided. Deriving a variey's
degree by considering point samples drawn from it is a task yet to be accomplished.

Eventually, implementing the proposed modi�cations to account for the relaxed assumptions is

44

going to drastically increase the complexity of our algorithm. Thus, ways to optimize its im-
plementation need to be considered. The HomotopyContinuation.jl package uses expensive
polynomial manipulations, so relying on local methods or even the Sampson distance instead
might help. In addition, parallel computing, treating the threshold τ (cf. Section 4.4) as a hy-
perparameter and using an optimized solver for the nonlinear optimization problem (10) instead
of vanilla gradient descent have the potential to signi�cantly improve the algorithm's runtime.
All of these points require experimental veri�cation.

The sparsity of the involved polynomial equations is an important factor in the development
of an algorithm for learning polynomial equations. However, it has not been studied in this
thesis. Naturally, we expect the generators of an ideal to be sparse, implying that further work
is required here. An idea is to feed the algorithm's output into a computer algebra system such
as Oscar.jl (cf. Decker et al. [11]) to further analyze the polynomials. As a result, we �nd a
more convenient representation of the data and compute a Gröbner basis of the learned ideal.
Another way to solve this issue is to use a di�erent constraint in the nonlinear optimization
program that does not enforce orthonormality of the coe�cient vectors with respect to the inner
product 〈-, -〉Γ (cf. Section 4.4).

As discussed in Section 4.6, we have not been able to relax the assumption that the underlying
variety is a complete intersection yet. Conceivably, a recursive approach as presented in Section
3.2 combined with model selection criteria can potentially help in omitting this assumption. In
Ma et al. [35], a similar approach has proven to be promising.

45

7 References

[1] John A. Abbott, Anna M. Bigatti, Martin Kreuzer and Lorenzo Robbiano: Computing
Ideals of Points. Journal of Symbolic Computation 30 (2000), pp. 341-356.

[2] Ake Björck and Victor Pereyra: Solution of Vandermonde systems of equations. Mathemat-
ics of Computation 24 (1970), pp. 893-903.

[3] Kaare Brandt Petersen and Michael Syskind Pedersen: The Matrix Cookbook.
math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf (2012), Accessed: October 17, 2020.

[4] Paul Breiding and Orlando Marigliano: Random points on an algebraic manifold. SIAM
Review 2 (2020), pp. 683�704.

[5] Paul Breiding, Sara Kalisnik Verovsek, Bernd Sturmfels and Madeleine Weinstein: Learning
Algebraic Varieties from Samples. Revista Matemática Complutense 31 (2018), pp. 545�593.

[6] Paul Breiding and Sascha Timme: The point on a variety that minimizes the distance to
a given point. JuliaHomotopyContinuation.org/examples/critical-points. Accessed:
July 13, 2020.

[7] Paul Breiding and Sascha Timme: HomotopyContinuation.jl: A package for homotopy con-
tinuation in Julia. International Congress on Mathematical Software 10931 (2018), pp.
458-465.

[8] Francesco Camastra: Data Dimensionality Estimation Methods: A survey. Pattern recogni-
tion 36 (2003), pp. 2945-2954.

[9] Michel Chasles: Construction de la courbe du troisième ordre déterminée par neuf points.
Comptes Rendus des Séances de l'Académie des Sciences 36 (1853), pp. 943�952.

[10] David A. Cox, John Little and Donal O'Shea: Ideals, Varieties and Algorithms. Springer
Science & Business Media (2013).

[11] Wolfram Decker, Claus Fieker, Max Horn and Michael Joswig: Oscar.jl.
oscar.computeralgebra.de/ (2018). Accessed: November 26, 2020.

[12] Harm Derksen: Hilbert series of subspace arrangements. Journal of pure and applied algebra,
209 (2007), pp. 91-98.

[13] Tom G. Dietterich: Over�tting and Undercomputing in Machine Learning. ACM Computing
Surveys 27 (1995), pp. 326-327.

[14] Jan Draisma, Emil Horobet, Giorgio Ottaviani, Bernd Sturmfels and Rekha R. Thomas: The
Euclidean Distance Degree of an Algebraic Variety. Foundations of Computational Mathe-
matics 16 (2016), pp. 99�149.

[15] David Eisenbud, Mark Green and Joe Harris, Cayley-Bacharach Theorems and Conjectures.
Bulletin of the American Mathematical Society 33.3 (1996), pp. 295-324

[16] Andrew Fitzgibbon, Maurizio Pilu and Robert Fisher: Direct least squares �tting of ellipses.
Proceedings of 13th International Conference on Pattern Recognition 1 (1996), pp. 253-257.

[17] James V. Burke: Nonlinear Optimization. sites.math.washington.edu/~burke/crs/408/
notes/Math408_W2020/math408text.pdf (2020). Accessed: December 29, 2020.

[18] Andreas Gathmann: Algebraic Geometry. mathematik.uni-kl.de/~gathmann/class/

alggeom-2014/alggeom-2014.pdf (2014). Accessed: November 19, 2020.

46

math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
JuliaHomotopyContinuation.org/examples/critical-points
oscar.computeralgebra.de/
sites.math.washington.edu/~burke/crs/408/notes/Math408_W2020/math408text.pdf
sites.math.washington.edu/~burke/crs/408/notes/Math408_W2020/math408text.pdf
mathematik.uni-kl.de/~gathmann/class/alggeom-2014/alggeom-2014.pdf
mathematik.uni-kl.de/~gathmann/class/alggeom-2014/alggeom-2014.pdf

[19] Andreas Gathmann: Plane Algebraic Curves. mathematik.uni-kl.de/~gathmann/class/
curves-2018/curves-2018.pdf (2018). Accessed: December 30, 2020.

[20] Mike B. Giles: An extended collection of matrix derivative results for forward and reverse
mode algorithmic di�erentiation. Advances in Automatic Di�erentiation, Lecture Notes in
Computational Science and Engineering 64 (2008), pp. 35-44.

[21] Robin Hartshorne: Algebraic Geometry. Springer Science & Business Media 52 (2013).

[22] Daniel Heldt, Martin Kreuzer, Sebastian Pokutta and Hennie Poulisse: Approximate Com-
putation of zero-dimensional polynomial ideals. Journal of Symbolic Computation 44 (2009),
pp. 1566-1591.

[23] Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani: An Introduction to
Statistical Learning. Springer Texts in Statistics 103 (2013).

[24] Yi Ma, Allen Yang, Harm Derksen and Robert Fossum: Estimation of Subspace Arrange-
ments with Applications in Modeling and Segmenting Mixed Data. SIAM Review 50 (2008),
pp. 413�458.

[25] Mateusz Michaªek and Bernd Sturmfels: Invitation to Nonlinear Algebra. American Math-
ematical Society (2021).

[26] Thomas P. Minka: Old and New Matrix Algebra Useful for Statistics. tminka.github.io/
papers/matrix/minka-matrix.pdf (2000), Accessed: October 17, 2020.

[27] H. Michael Möller and Bruno Buchberger: The construction of multivariate polynomials
with preassigned zeros. Lecture Notes in Computer Science 144 (1982), pp. 24-31.

[28] Peter J. Olver: On Multivariate Interpolation. Studies in Applied Mathematics 116 (2006),
pp. 201-240.

[29] Victor Y. Pan: How Bad Are Vandermonde Matrices? SIAM Journal on Matrix Analysis
and Applications 37 (2016), pp. 676�694.

[30] Roger Penrose: A generalized inverse for matrices. Mathematical Proceedings of the Cam-
bridge Philosophical Society 51 (1955), pp. 406-413.

[31] Daniel Plaumann: Classical Algebraic Geometry. Lecture Notes, Universität Konstanz
(2015), chapter 8.

[32] Chris Preston: Ein Skript für Lineare Algebra I und II. https://www.math.uni-bielefeld.
de/~preston/teaching/linalg/files/linalg.pdf (2004). Accesses: November 20,2020.

[33] Paul Sampson: Fitting conic section to �very scattered� data: An iterative re�nement of
the Bookstein algorithm. Computer Vision, Graphics and Image Processing, 18 (1982), pp.
97�108.

[34] Igor R. Shafarevich: Basic Algebraic Geometry 1. Varieties in Projective Space. Springer-
Verlag (1994).

[35] Rene Vidal, Yi Ma and Shankar Sastry: Generalized Principal Component Analysis (GPCA).
IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2005), pp. 1945-1959.

47

mathematik.uni-kl.de/~gathmann/class/curves-2018/curves-2018.pdf
mathematik.uni-kl.de/~gathmann/class/curves-2018/curves-2018.pdf
tminka.github.io/papers/matrix/minka-matrix.pdf
tminka.github.io/papers/matrix/minka-matrix.pdf
https://www.math.uni-bielefeld.de/~preston/teaching/linalg/files/linalg.pdf
https://www.math.uni-bielefeld.de/~preston/teaching/linalg/files/linalg.pdf

	Introduction
	Algebro-Geometric Basics
	Generalized Principal Component Analysis
	The Noise-Free Case
	Recursive GPCA
	Noisy Samples

	Learning Equations of Algebraic Varieties
	Presentation of the Basic Method
	Choosing a Suitable Error Function
	Transferring GPCA to Arbitrary Varieties
	Variations of the Algorithm
	Combatting the Current Overfitting
	Comparison of the Presented Methods
	Limitations of the Algorithm LearnVanishingIdeal

	The Cayley-Bacharach Theorem
	Conclusion and Future Work
	Conclusion
	Future Work

	References

