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Riemannian Optimization over Semialgebraic Sets†

1. Constrained Polynomial Optimization

Consider the constrained optimization problem

min
x∈C

f(x) (1)

for a polynomial f ∈ R[x1, . . . , xn] and a semialgebraic set C generated by equal-
ities g1(x), . . . , gs(x) = 0 and inequalities h1(x), . . . , ht(x) ≥ 0 for polynomials
gi, hj ∈ R[x1, . . . , xn].
A major obstacle in finding the optimum of a constrained polynomial optimization
problem is that both the polynomial p and the constraint set C are not convex in
general. Solution strategies involve reformulating this optimization problem as the
maximization of λ such that f(x)−λ ≥ 0 over C, relating polynomial optimization
and nonnegativity certificates. Typical relaxations are Sums of Squares1, leading
to a convex optimization problem that can be solved via semidefinite program-
ming, and Sums of Nonnegative Circuits2. Such relaxations provide lower bounds
on the global optimum of (1).
For finding upper bounds, currently either a highly specialized approach is
employed3 or Newton’s method is directly applied. This approach is not guar-
anteed to converge globally to the closest minimum.

3. Euclidean Distance Retraction

The closest point problem:
For a smooth C = g−1(0)∪ {x : hj(x) ≥ 0}
in Rn and a fixed point u ∈ Rn, the closest point
problem can be expressed as

minx
1
2
|x − u|2

s.t. gi(x) = 0 and hj(x) ≥ 0
with i ∈ E and j ∈ I .

In terms of Karush-Kuhn-Tucker conditions5, this problem can be reformulated as

L(x, λ, µ; u) =
1
2

n∑
i=1

(xi − ui)
2 − λT g(x)− µTh(x).

In p ∈ C, the set of active indices is A(p) = {i : i ∈ E or hi(p) = 0}. From
now on, assume that the set of gradients of active constraints in p is linearly
independent (LICQ). The first-order optimality criterion then becomes

∇xL(x, λ, µ; u) = 0
gi(x) = 0 and hj(x) ≥ 0,
µj ≥ 0 and µj · hj(x) = 0.

In particular, the Lagrange mulitpliers corresponding to the inactive inequality con-
straints are zero. Hence. we can “track” the known solution x = p along a path
u : [0, 1] → Rn from u1 = p to u0 = p + v via the straight-line homotopy

H(x, λ, µ; t) = ∇L(x, λ, µ; (1 − t)u0 + t u1)

using a predictor-correct scheme known as homotopy continuation6. It uses an
iterative combination of Euler’s and Newton’s method; whenever hj(x) < 0, we
add it to the equality constraints to correct the point to the boundary. Otherwise, hj
does not contribute to this step. Certified curve-tracking methods are applicable7.

4. Optimality Condition over Semialgebraic Sets

Since the LICQ holds, the tangent cone in p is equal to5

T̂pC = {w : wT ∇gi(p) = 0 for i ∈ E or wT ∇hi(p) ≥ 0 for j ∈ A(p)∩I}.

Theorem5: Assume for some p ∈ C there is a Lagrange multiplier λ, µ such
that the KKT conditions are satisfied. If additionally,

wT ∇2
xxL(p, λ, µ)w > 0 for all nonzero w ∈ T̂pC

with wT ∇hj(p) = 0 for all j with µj > 0, then p is a strict local minimum.
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2. Riemannian Geometry

Definition: Let S ↪→ M be an embedded Riemannian manifold and x ∈ M.
A retraction at x is a smooth map Rx : TxM → M such that each curve
c(t) = Rx(tv) satisfies

c(0) = x and ċ(0) = v.

If additionally c̈(0) ∈ Nx(S ,M), it is called 2nd-order.

Figure: Two second-order retractions on the torus.

Theorem4: Let M ⊂ Rn be a smooth manifold. For any point p ∈ M, define
the relation Rp ⊂ TpM×M by

Rp = {(v, u) ∈ Rn × Rn : u ∈ argminy∈M|p + v − y|}.

There exists a neighborhood U of 0 in TpM such that Rp defines a local,
second-order retraction. I.e., the curve t 7→ Rp(tv) matches the geodesic
at p corresponding to v up to second-order.

5. Riemannian Gradient Descent

For a Riemannian manifold M, consider the constrained optimization problem

min
x∈M

f(x)

with a smooth f : M → R. Similar to unconstrained optimization, local methods
such as gradient descent can be employed to solve this problem8: Given a de-
scent direction vk ∈ T̂xkM satisfying the conditions from Zoutendijk’s theorem9

and a step size αk satisfying the Wolfe conditions9, the retraction is applied re-
peatedly until f ’s Riemannian gradient is smaller than a given tolerance τ > 0:

xk+1 = Rxk(αkvk) until ||grad f(xk)|| < τ.

Here, the Riemannian gradient grad f(x) is given by the projection of ∇f(x) onto
the tangent cone T̂xM. In the case of semialgebraic sets C, this is the projection
onto the linear subspace generated by the equality and the violated inequality
constraints vT ∇hj(x) < 0 with j ∈ A(x)∩I for a descent direction v ∈ T̂xC.

6. Singularities

In singularities, the dimension of the tangent space may be larger than expected.
Hence, there may only be a subset of tangent directions with measure zero that
linearizes the local behavior of the constraint set. Given a semialgebraic set C,
the set of singular points has a positive codimension and the regular loci of the
irreducible components form smooth manifolds10. By taking random and small
tangent steps weighted by the Riemannian gradient in the singularity, we are able
to reliably escape singularities. The optimization routine proceeds if a lower ob-
jective function value is identified; otherwise, the singularity is considered optimal.

7. Examples


