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Introduction

For a sufficiently nice topological space X we will see that the fundamental group π1(X,x0) at
a point x0 ∈ X is isomorphic to the group of deck transformations of the universal covering
p : E → X, i.e. homeomorphisms σ of E such that the following diagram commutes:

E E

X

σ

p p

Similarly, for a field X and a separable closure E of X, the Galois group of X is nothing but the
set of automorphisms σ of E that fix X. In other words, those are all automorphisms on E, such
that the following diagram commutes:

E E

X

σ

ι ι

Here, ι : X → E denotes the field inclusion map.

This should already give us the idea that there is a correlation between the fundamental group
and the Galois group, even though we might not be able to fully grasp how this correlation might
look like.

To do this, our initial action will be to recall some basic definitions and properties from category
theory, algebra and topology that will be necessary for introducing other notions later on. The
main goal of this thesis will be to prove certain properties of the category of finite covering spaces
and the category of some special k-algebras over a field k and to eventually compare them. For
that and for seeing similiarities, it will be useful to also prove properties for the objects of these
categories.

The last chapter gives an explicit example for when fundamental groups and Galois groups occur
simultaneously. For a Riemann surface X, i.e. a 1-dimensional complex manifold, it is possible
to construct an abstract correlation between finite field extensions of its field of meromorphic
functionsM(X) and branched coverings, which are nothing but special coverings. This correlation
needs the language of category theory. The final theorem of this thesis will give a more explicit
correlation, actually an isomorphism, between the Galois group of a particular field extension
and the profinite completion of the fundamental group of the punctured space, which is a kind
of limit of the fundamental group modulo its normal subgroups of finite index. This is meant to
put the fundamental group and the Galois group into a context.

Another aim of this thesis will be to compare the separable closure ksep of a field k and the
universal cover X̃ of a topological space X. One will notice that it will be possible to put the
subgroups of the groups of automorphisms on X̃ that fix X (the deck transformations) into a
one-to-one correspondence with the subordinate covering spaces, which sounds quite similar to
the well-known Fundamental Theorem of Galois Theory. However, this theorem only holds for
finite field extensions, we will expand it to infinite Galois extensions. In doing so, we will see a
correspondence between Aut(X̃/X) and Gal(ksep/k) and thus between the universal cover and
the separable closure.
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Chapter 1

Algebraic Foundations

Before beginning with outlining the concepts that this thesis strives to cover, let us recall some
basic concepts that will be necessary throughout the thesis. The aim of this chapter is to summa-
rize known concepts and therefore will not be shaped by a common thread, but rather bringing
back to mind some algebraic notions.

1.1 Category Theory

Definition 1.1.1 A category C consists of a class of objects ob(C) and a class Hom(C) of mor-
phisms between those objects. Given two objects A and B, we write HomC(A,B) for the set of
morphisms A→ B. We require:

1. for φ ∈ HomC(A,B) and ψ ∈ HomC(B,D) there is ψ ◦ φ ∈ HomC(A,D) and we call it
composition. For this, we require associativity.

2. ∀A ∈ ob(C) ∃ idA ∈ HomC(A,A), the identity morphism, that fulfils φ ◦ idA = φ = idB ◦ φ
for any φ ∈ HomC(A,B).

In the following, we will only deal with small categories, meaning that the objects of this
category form a set.

Definition 1.1.2 For a category C, the opposite category Cop is defined by ob(Cop) = ob(C) and
reversing the morphisms, so we have HomC(A,B) = HomCop(B,A) for any A,B ∈ ob(C).

Definition 1.1.3 In a category C, an object Z is called final, if for each object B there is a
unique morphism B → Z.
Conversely, an object is called initial, if for each object B there is a unique morphism A→ B.

Example: After having seen some definitions, let us introduce a first example for a better
understanding of the topic. We view the small category C with objects A,B,D and morphisms
that are depicted in the following diagram. Here, the identity morphisms are assumed but not
included.

A

B

D

φ

ψ

τ

In the picture we can see that A is the initial object of C and D is the final object of C.
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Definition 1.1.4 A (covariant) functor F between two categories C and D is a mapping that
associates to each object X an object F (X) and to each morphism g : X → Y in Hom(C) a
morphism F (g) : F (X) → F (Y ) in Hom(D), such that F preserves identity morphisms and
composition of morphisms.
Conversely, a contravariant functor from C to D is a functor from C to Dop.

Definition 1.1.5 In a category C, a morphism f : A→ B is called a monomorphism, if for any
g, h : D → A, f ◦ g = f ◦ h implies that g = h.

Apart from that, a morphism f : A → B is called an epimorphism, if for any j, k : B → D,
j ◦ f = j ◦ f implies that j = k.

Finally, we call f : A → B an isomorphism, if there exists a morphism g : B → A such that
f ◦ g = idB and g ◦ f = idA.

Example: In the category of sets, the morphisms are functions. Furthermore, we can easily see
that the monomorphisms are injective functions, the epimorphisms are surjective functions and
isomorphisms are bijective functions.

Definition 1.1.6 Let C1 and C2 be categories and F, G functors C1 → C2. A natural transfor-
mation Ψ is a collection of morphisms ψA : F (A) → G(A) ∈ Hom(C2) for each object A in C1

such that for any morphism φ : A→ B ∈ Hom(C1) the following diagram commutes:

F (A)

F (B) G(B)

G(A)
ψA

F (φ)

ψB

G(φ)

The natural transformation Ψ is an isomorphism, if each ψA is an isomorphism and in this case
we say that F and G are isomorphic.

Definition 1.1.7 Two categories C1 and C2 are called equivalent, if there exist two covariant
functors F : C1 → C2 and G : C2 → C1 and two natural transformations that are isomorphisms
Ψ : F ◦G→ idC2 and Φ : G ◦ F → idC1 .
Otherwise, we call C1 and C2 anti-equivalent, if C1 is equivalent to Cop2 .

Example: Consider the category Grp of groups with group homomorphisms as morphisms. Let
(G, ?) be a group. Then (Gop, ?op) is its opposite group, where ?op is defined as a?op b = b ? a and
G and Gop have the same underlying set. If we define for any group homomorphism f : G→ H
the opposite group homomorpism to be fop = f : Gop → Hop, then we get

fop(a ?op b) = fop(b ? a) = f(b ? a) = f(b) ? f(a) = fop(b) ? fop(a) = fop(a) ?op fop(b)

This induces a covariant functor op : Grp → Grp that maps a group to its opposite group. This
is naturally isomorphic to idGrp. To prove that, by definition 1.1.6 we need to find a collection
of group isomorphisms ψG : Gop → G such that for any group homomorphism φ : G → H it
holds that φ ◦ ψG = ψH ◦ φop. We will see that the inversion proves this to be true. By choosing
ψG(g) = g−1, since the inverse element is unique in a group and the inversion is obviously a
group homomorphism. Its inverse map is ψopG , therefore it is an isomorphism. To prove that it is
a natural transformation, we show

ψ ◦ φG(g) = ψ(g−1) = ψ(g)−1 = φH ◦ ψ(g) = φH ◦ ψop(g)

Consequently the natural transformation between op and idGrp is an isomorphism. As a result,
by definition 1.1.7 Grp and Grp are equivalent categories, which is not really a surprising result.
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Definition 1.1.8 Let F : C1 → C2 be a functor. It is faithful, if for any A,B ∈ ob(C1) it holds
that the map FAB : HomC1(A,B) → HomC2(F (A), F (B)) is injective. It is called fully faithful,
if the maps FAB are bijective for any two given objects.
Opposite to this, the functor F : C1 → C2 is called essentially surjective, if every object of C2 is
isomorphic to some object of the form F (A).

Lemma 1.1.9 Two categories C1 and C2 are anti-equivalent if there exists a contravariant functor
from C1 to C2 that is fully faithful and essentially surjective.

Proof Let us first notice that this would be a functor F : C1 → Cop2 , so let us fix, using the
essential surjectivity of F for any V ∈ ob(C2) an isomorphism iV : F (A)

∼→ V for some A ∈ ob(C1).
Then define a functor G : Cop2 → C1 by G(V ) = A and G(φ : V →W ) = F−1

AB(i−1
W ◦ φ ◦ iV ), where

B = G(W ) and FAB is the bijection that is induced by the fully faithfulness of F (see 1.1.8). The
maps iV : F (G(V ))

∼→ V then induce the isomorphism Φ : F ◦G ∼→ idCop2 from definition 1.1.6.

For constructing the second isomorphism Ψ : G◦F ∼→ idC1 that is by definition 1.1.7 necessary for
the anti-equivalence of categories, we need to construct ΨA : G(F (A))→ A for each A ∈ ob(C1).
Since F is fully faithful by assumption, it suffices to construct a map F (ΨA) : F (G(F (A))) →
F (A) and we may take the unique preimage of idF (A) under Φ as F (ΨA). Similarly, we can con-

struct a map Ψ−1
A : A→ G(F (A)) that is inverse to ΨA, thus yielding us the desired isomorphism.

�

Definition 1.1.10 (Pullback and Fiber Product, [3])
Let C be a category and let f : A → C and g : B → C be morphisms. A pullback of f and g
consists of morphisms p1 and p2 such that g ◦ p2 = f ◦ p1 and such that this has the following
universal property : for all morphisms x1 : Y → A and x2 : Y → B such that f ◦ x1 = g ◦ x2,
there exists a unique morphism u : Y → P such that x1 = p1 ◦ u and x2 = p2 ◦ u. This ensures
that a pullback is unique up to a canonical isomorphism. Equivalently to this definition, we can
say that the following diagram commutes:

Y

P

A C

B
p2

p1

f

g

∃!u

x2

x1

We call P the fiber product of A and B over C and denote it by P = A×C B.

Lemma 1.1.11 Let A,B,C be sets and let ξ : A → C and µ : B → C be two maps. Then the
fibre product of A and B over C is

A×C B = {(a, b) ∈ A×B : ξ(a) = µ(b)} (1.1)

Proof First, we need to find maps p1 and p2, but we can choose them to be the restrictions
of the two projections πA : A × B → A and πB : A × B → B to A ×C B. If we pick any
(a, b) ∈ A×C B, then

ξ ◦ πA(a, b) = ξ(a)
(1.1)
= µ(b) = µ ◦ πB(a, b)

Since we picked an arbitrary (a, b) ∈ A×C B, this implies that ξ ◦ πA = µ ◦ πB.
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Now, let Y be another object with morphisms x1 : Y → A and x2 : Y → B such that ξ◦x1 = µ◦x2.
This implies that u is uniquely determined by u(y) = (x1(y), x2(y)). This is well-defined by the
fact that ξ(x1(y)) = µ(x2(y)). �

Definition 1.1.12 Let (Xi)i∈I be a collection of objects in C. The coproduct of this collection
is an object

⊔
i∈I Xi together with the morphisms qj : Xj →

⊔
i∈I Xi for each j ∈ I, such that for

any object Y of C and any collection of morphisms fj ∈ HomC(Xj , Y ), j ∈ I, there is a unique
morphism f :

⊔
i∈I Xi → Y such that fj = f ◦ qj for all j ∈ I.

In other words, for a coproduct, we expect the following diagram to commute for any chosen
j, j′ ∈ I:

Xj
⊔
i∈I Xi Xj′

Y

qj qj′

fj fj′
∃!f

Definition 1.1.13 Let X be an object in C and let G be a subgroup of the group of isomorphisms
in HomC(X,X) (automorphisms). The categorial quotient of X by G is an object X/G in C with
a morphism p : X → X/G in C such that for all σ ∈ G we have p = p ◦ σ. Additionally, we
require that for any morphism f ∈ HomC(X,Y ) with some object Y that satisfies f = f ◦ σ for
all σ ∈ G, there exists a unique g : X/G → Y such that f = g ◦ p. The following commutative
diagram sums this up:

X X

Y X/G

σ

f

pf
p

∃!g

Lemma 1.1.14 If we are in a category where the objects are sets, the coproduct is the usual
disjoint union together with the inclusion maps ιj with ιj(x) = (x, j):⊔

i∈I
Xi =

⋃
i∈I
{(x, i) : x ∈ Xi}

The categorial quotient of X by a group of automorphisms G is then

X/G = {{g(x) : g ∈ G} : x ∈ X}

Proof For the first part of the lemma, let us choose for any Xj a map fj : Xj → Y for some
object Y . We define f on every disjoint set Xj to be fj as follows:

f(x, i) = fi(x)

This way we get for each j ∈ I that fj = f ◦ ιj .

On the other hand, for the second part of the proof we need to check thatX/G with the topological
quotient map p : X → X/G. Here, the property p = p◦σ for all σ ∈ G is clear from the definition.
Now, let f : X → Y be a function that satisfies f = f ◦ σ for any σ ∈ G. We first notice that by
this property f is constant on the equivalence classes of X/G. Accordingly, we can define g by
restricting f to X/G. �

Remark: This lemma and lemma 1.1.11 will from now on be our standard tools for proving
properties for categories whose objects are sets.

Definition 1.1.15 A morphism u : X → Y is called a direct summand, if there is a morphism
q2 : Z → Y such that Y together with q1 = u and q2 is the coproduct X t Z of X and Z.
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1.2 Profinite Groups

Definition 1.2.1 Let G be a topological space whose underlying set is equipped with a structure
of a group with operation ?. We call G a topological group, if the group operation (a, b) 7→ a ? b
and inversion a 7→ a−1 are continuous maps.

Definition 1.2.2 Let (I,≺) be a non-empty set I together with a binary relation ≺. It is called
a directed set, if it fulfills the following properties:

1. ≺ is reflexive: For any i ∈ I it holds that i ≺ i.
2. ≺ is antisymmetric: For any i, j ∈ I with i ≺ j and j ≺ i it holds that i = j.
3. ≺ is transitive: For all i, j, k ∈ I with i ≺ j and j ≺ k it holds that i ≺ k.
4. ≺ is directed: For all i, j ∈ I there exists a k ∈ I that satisfies i ≺ k and j ≺ k.

Definition 1.2.3 Let (I,≺) be a directed set and (Si)i∈I a collection of sets indexed by I. Now
suppose for each j ≺ i there exists a map µij : Si → Sj satisfying the following conditions:

µji ◦ µkj = µki for all i ≺ j ≺ k
µii = idSi for all i ∈ I

These three entities together are called a projective system. The projective limit lim
←−

Si of this

projective system is then defined to be

lim
←−

Si =

{
(xi)i∈I ∈

∏
i∈I

Si : µij(xi) = xj for all i, j ∈ I with j ≺ i

}

Proposition 1.2.4 (Profinite Groups, [5])
Let ((I,≺), (Gi)i∈I , (µij)j≺i) be a projective system, where all Gi are finite groups and µij are
group homomorphisms. Then G = lim

←−
Gi is a group.

If each Gi is equipped with the discrete topology and
∏
iGi with the product topology then G is a

closed topological subgroup of
∏
iGi.

Proof We use the fact that π =
∏
i∈I Gi is a group and show that the projective limit G from

definition 1.2.3 is a subgroup of that group. Since Gi are all groups, it holds that the identity
element 1Gi ∈ Gi and, since the µij are group homomorphisms it holds that µij(1Gi) = 1Gj for
all j ≺ i, which implies that G is non-empty.
Let (ai)i∈I , (bi)i∈I be two elements of G. Then

(ai)i∈I ?π (bi)i∈I = (ai ?Gi bi)i∈I

and since all the µij are group homomorphisms, we have for any pair of j ≺ i:

µij(ai ?Gi bi) = µij(ai) ?Gj µij(bi) = aj ?Gj bj

Hence, (ai)i∈I ?π (bi)i∈I ∈ G which implies that G is closed under ?π.
Now, let (ai)i∈I ∈ G be an arbitrary element. Using that µij are group homomorphisms, a similar
argument shows that (ai)

−1
i∈I ∈ G which implies that G is closed under inversion.

Ultimately, this shows that G is a subgroup of π, yielding that G is a group itself.

Recall that π is equipped with the product topology. The open basis elements are of the form∏
j∈S

Uj ×
∏
i∈I\S

Gi for a finite S ⊂ I

Here, Uj ⊂ Gj are open sets and as each Gj is equipped with the discrete topology, the Uj are
an arbitrary subset of Gj . By definition 1.2.1 a group is a topological group, if both, the group
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operation and inversion, are continuous. Since G is equipped with the subspace topology, it
suffices to show that the group operation and inversion are continuous as viewed on π, since on
G they are nothing but a restriction from π.

For this matter, let us choose an arbitrary (xj)j∈S ∈
∏
j∈S Gj for some finite set S ⊂ I. We denote

U(xj)j∈S ,S =
∏
j∈S{xj} ×

∏
i∈I\S Gi. Since this forms an open basis for the profinite group, it

suffices to check continuity for U(xj)j∈S ,S . We prove that for any (ai)i∈I × (bi)i∈I ∈ π2 and any
open basis neighorbood V of (ai)i∈I ?π (bi)i∈I we find a neighborhood of (ai)i∈I × (bi)i∈I that
?π maps entirely into V . So let V = U((ai)?Gi (bi))i∈S ,S

for some finite S ⊂ I. Then, obviously,

?π(U(ai)i∈S ,S × U(bi)i∈S ,S) ⊂ V , since the operation ?π is the operation ?Gi on each coordinate
i ∈ I, which implies that ?π is continuous at (ai)i∈I × (bi)i∈I and since this construction can
equivalently be done at any point (ai)i∈I× (bi)i∈I ∈ π2, we know that ?π is continuous altogether.

A similar construction with (x−1
i )i∈I ∈ π indicates that the inversion ( )−1 is also continuous.

Ultimately, the restrictions of ?π and ( )−1 to G are also continuous which implies that G is a
topological group.
In addition, G is closed in π =

∏
iGi, because when choosing a point (xi)i∈I ∈ π where µij(xi) 6=

xj for some j ≺ i let us pick the open basis set that contains xi and xj , namely Uxj ∩ Uxi . It is
open in the product topology, since intersections of open sets are open. Moreover, it is disjoint
from G by construction. We can conclude that G is closed. �

Definition 1.2.5 Following the above poposition we call lim
←−

Gi a profinite group.

Furthermore, for an arbitrary group G we can view the I as the set of all normal subgroups
of finite index of G. Equipped with the order relation N ≺ M ⇔ N ⊃ M we observe that
(I,≺) is a directed set. Then GN = G/N with N ∈ I are groups and we get the natural group
homomorphisms µNM : GN → GM with µNM (x) = Mx for M ≺ N . This is a projective system
by 1.2.3. Then the inverse limit Ĝ = lim

←−
G/N is called the profinite completion of G.

Remark: There is a natural homomorphism µ : G→ Ĝ for the profinite completion Ĝ of G that
is characterized in the following way: Given any profinite group H and any group homomorphism
f : G → H, there exists a unique and continuous group homomorphism g : Ĝ → H such that
f = g ◦ µ.

Example [Ẑ]: Let us view the projective system consisting of Z/nZ for n ≥ 1. In this case,
the partial order is given by the divisibility relation m|n ⇔ mZ ⊃ nZ which is a directed
set, since every two integers have a least common multiple. The group homomorphisms are
µnm : Z/nZ → Z/mZ that sends x 7→ x mod m. It is well-defined, if m|n. The profinite
completion Ẑ = lim

←−
Z/nZ contains a copy of Z by taking (0, 1, 1, 1, . . . ) to be 1 and the rest to

be generated by the representative of 1 through the natural addition of the rings Z/nZ. Each
m(0, 1, 1, 1, . . . ) is unique for m ∈ Z, because there are infinitely many Z/nZ.
Additionally, if we take a non-empty open basis set U = (

∏
m∈S{xm} ×

∏
n∈N\S Z/nZ) ∩ Ẑ for a

finite set S ⊂ N and xm ∈ Z/mZ, we shall prove that there is an element of the form k(0, 1, 1, . . . )
in U for k ∈ Z. By shrinking U to a new open set U ′, if necessary, we can assume that the newly
constructed S′ is of the form {m : m|N} for some N ∈ N, e.g. N = lcm(S). This is well-
defined, since S is finite. The construction is possible, since we can just choose S′ = S ∪ {N}
and U ′ = U ∩ ({xN} ×

∏
n∈N\{N} Z/nZ). The open set U is non-empty by assumption, so we

just pick xN ∈ Z/NZ that is compatible with the group homomorphisms, which is possible
by the definition of Ẑ. Then we found a natural number xN that has the requested property
xN (0, 1, 1, . . . ) ∈ U ′ ⊂ U , since the group homomorphisms µNm map y 7→ y mod m, so we get by
the compatibility and the fact xN ∈ U ′ that µNm(xN ) = xN mod m = xm for any m ∈ S′. This
yields that Z is a dense subset of Ẑ.

Definition 1.2.6 Let (G, ?G) be a group and X a set. A group action φ of G on X is a function

φ : G×X → X, (g, x) 7→ g ·φ x
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where ·φ satisfies e ·φ x = x and g ·φ (h ·φ x) = (g ?G h) ·φ x. We then call X a G-set. Furthermore,
the action is called free, if for all non-trivial g ∈ G and all x ∈ X it holds that g ·φ x 6= x and it
is called trivial, if for all g ∈ G and x ∈ X it holds that g ·φ x = x.
If E is a G-set, we denote EG = {e ∈ E : g ·φ e = e for all g ∈ G} the set of G-invariants of E.
In general, it is neither free nor trivial.

Example: Let G be a group and let H be a subgroup of G. Then multiplication from the left is
an action of G on the set of cosets G/H, since g(aH) = (ga)H for all g, a ∈ G. By implication,
eG(aH) = (eGa)H = aH for all a ∈ G.

1.3 Finite Field Extensions

Definition 1.3.1 Consider two fields E ⊃ F . This is called a field extension of F and we denote
it by E/F . This way, E becomes a F -vector space and we call the dimension of this vector space
the degree of the extension and denote it by [E : F ]. In this manner, a finite extension E/F is a
field extension of finite degree.
An F -automorphism is a field automorphism on E that preserves F . It is easy to verify that the
F -automorphisms form a group together with composition. We denote this group by Aut(E/F ).
In addition, the field extension E/F is called algebraic, if every element α ∈ E is the root of some
non-zero polynomial f ∈ F [X]. Thus, we call α algebraic over F .

Lemma 1.3.2 Let L/E/F be a tower of field extensions. L/F is of finite degree if and only if
L/E and E/F are of finite degree. If this is the case, the following equation holds:

[L : F ] = [L : E] · [E : F ]

Proof If L is of finite degree over F , it most certainly is of finite degree over E. Moreover, E,
being a subspace of a finite dimension vector space, is also of finite dimension.
Now, let (fj)j=1,...,n be the basis of E as an F -vector space and (ei)i=1,...,m the basis of L as an
E-vector space. It is sufficient to show that (eifj)i=1,...,m; j=1,...n is a basis of L as a F -vector
space because n and m are finite and so is n ·m.
Firstly, we prove that (eifj) generates L. For some l ∈ L we have that

l =

m∑
i=1

αiei for some αi ∈ E.

Just as E is an F -vector space, so

αi =

n∑
j=1

βi,jfj for some βi,j ∈ F.

The logical conclusion is that

l =

m∑
i=1

n∑
j=1

βi,jeifj

and thus (eifj) generates L.
Secondly, (eifj) is linear independent. This is due to the fact that a linear relation

∑
βi,jeifj =

0, βi,j ∈ F can be rearranged to
∑

i(
∑

j βi,jfj)ei = 0. Since (ei) forms a basis, it is linear
independent and therefore

∑
j βi,jfj = 0 for each i. By the same token, (fj) form a basis and

are consequently linear independent. This implies that βi,j = 0 and that is why (eifj) is linear
independent. �
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Definition 1.3.3 Let F be a field. A non-constant polynomial is called irreducible over F ,
if its coefficients belong to F and it cannot be factored into the product of two non-constant
polynomials with coefficients in F .

Definition 1.3.4 Let E/F be an algebraic field extension. For some element α ∈ E the minimal
polynomial mα of α is a monic generator of the ideal {h ∈ F [X] : h(α) = 0}.

Lemma 1.3.5 For an algebraic field extension E/F and any α ∈ E the minimal polynomial mα

is irreducible.

Proof Suppose mα was not irreducible. From definition 1.3.4 we know that mα is non-constant,
since the only constant polynomial that has α as a zero is the constant zero polynomial. As α is
algebraic over F by definition 1.3.1 there is a non-constant polynomial that has α as a root which
is why the ideal, call it Iα, from definition 1.3.4 is non-zero. This implies that the generator of
said ideal is non-constant (note: c /∈ Iα for any c ∈ F ?).
Applying that mα is not irreducible, it can be factored into two non-constant polynomials, denote
them by f and g, with coefficients in F . Now, α is a root of mα, so it has to be the root of either
f or g. Without loss of generality, let us assume that α is a root of f . Hence, mα cannot generate
f , since deg(f) < deg(mα), but we know f(α) = 0, so f ∈ Iα. This contradicts to the fact that
mα generates Iα and implies that mα is irreducible. �

Definition 1.3.6 An algebraic field extension E/F is called normal, if every irreducible polyno-
mial f ∈ F [X] either has no root in E or splits into linear factors in E.

The extension E/F is called separable, if for any α ∈ E the minimal polynomial mα ∈ F [X] has
distinct roots in an algebraic closure of F . Such a polynomial is called separable.

Definition 1.3.7 If an algebraic field extension E/F is both, separable and normal, we call it a
Galois extension. We call Aut(E/F ) the Galois group of the extension E/F and we denote it by
Gal(E/F ).

Proposition 1.3.8 (Primitive Element Theorem, [4])
Let E = F (α1, . . . , αn) be a finite extension of F . Assume that α2, . . . , αn are separable over F .
Then there is a γ ∈ E such that E = F (γ). Here, F (α) denotes the smallest subfield of F that
contains both α and F .

Proof We proceed with induction. Note first that for n = 1 there is nothing to prove.

n = 2 : Let E = F (α, β) with β separable over F and let mα, mβ be their minimal polynomials
over F . Let L be a field where mα ·mβ splits into linear factors. Obviously, L contains a
copy of E. Let α = α1, . . . , αn be the roots of mα and let β = β1, . . . , βm be the roots of
mβ. Since we are dealing with separable extensions, these roots βi are distinct. Therefore,
the following polynomial equation has exactly one solution for each i ∈ {2, . . . , n} and
j ∈ {2, . . . ,m}:

αi + βj ·X = α+X · β (1.2)

Without loss of generality, let F be infinite. Otherwise, the multiplicative subgroup E? is
finite and as a subgroup of a field cyclic (compare [4, proposition 4.19], page 53), so it is
generated by one element ζ. Due to E being a field this means that E = F (ζ).
Let us choose a c ∈ E different from the solutions to (1.3). This surely exists, since we
only view a finite amount of solutions but the field is infinite. Set γ = α + c · β. Then the
polynomials mβ and f(x) = mβ(γ − c · x) have coefficients in F (γ), since before they had
coefficients in F and have β as a root. In fact, β is their only common root, as γ−c ·βj 6= αi
for i 6= j. The greatest common divisor of the polynomials is x− β which, in turn, implies
that β ∈ F (α, β). Then again, the linear combination α = γ − c · β also lies in F (γ),
wherefore F (γ) = F (α, β).

8



n→ n+ 1 : F (α1, α2, . . . , αn+1)
n=2
= F (α′1, α3, . . . , αn+1)

ind.
= F (γ) �

Theorem 1.3.9 (Fundamental Theorem of Galois theory for finite extensions, [1])
Let E be a finite Galois extension of F and let G = Gal(E/F ) be the corresponding Galois group.
The maps H 7→ EH and M 7→ Aut(E/M) are inverse bijections between the following sets:

{H : H ⊂ G subgroup} ←→ {M : E ⊃M ⊃ F and M field}

Moreover,

1. The correspondence is inclusion-reversing: H1 ⊃ H2 ⇔ EH1 ⊂ EH2.

2. The extension E/M is always Galois.

3. M/F is galois ⇔ H is a normal subgroup of G. In this case we have Gal(M/F ) ∼= G/H.

Proof For the proof, refer to Szamuely, [1], pages 5f.

Proposition 1.3.10 The field extension E/F is Galois, if and only if the only elements that are
fixed under the action of Aut(E/F ) are the ones in F .

Proof For the first implication, notice that the action of Aut(E/F ) on E indeed fixes F . We
need to show that, assuming E/F is a Galois extension, those are the only elements. For that
matter, let α ∈ E\F . Without loss of generality, we assume that E is a non-trivial field extension,
since for the case E/E the result is trivial. We aim to show that there is σ ∈ Gal(E/F ) that
does not fix α. Suppose there was no such σ. That means that the action of Gal(E/F ) fixes
all of F (α) ⊂ E which, in turn, means that Gal(E/F (α)) is trivial. Observe that the extension
E/F (α) is Galois by theorem 1.3.9. Since |Gal(E/F (α))| = [E : F (α)] by [1, corollary 1.2.7],
page 6, it holds that F (α) = E which is a contradiction.

Then again, assuming that the action of Aut(E/F ) only fixes F , we need to check that the field
extension E/F is separable and normal. First, pick α ∈ E \ F . It is a root of the polynomial
f(x) =

∏
σ(x− σ(α)), where σ runs over a system of left coset representatives of

G(α) = {α : g(α) = α for all g ∈ G = Aut(E/F )}.

Its coefficients are in F , since Aut(E/F ) fixes only F . As all the roots of f need to be roots of
the minimal polynomial mα, f is finite which is why it is well-defined. Thus, f divides mα, but
since mα is irreducible by lemma 1.3.5, so is f . Using that Aut(E/F ) fixes only F , we see that f
has no multiple roots. Therefore, f is a separable polynomial and α is separable, which implies
that E/F is a separable field extension.
In like manner, that the field extension is normal, since every irreducible polynomial can be
written in the above way modulo factors. Consequently, it splits into linear factors in E, since all
the σ(α) are contained in E by definition. Finally, this yields that E/F is a Galois field extension.
�

Remark: Here EG comes from definition 1.2.6 and denotes the set of G-invariants of E.
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1.4 The Fundamental Group

Definition 1.4.1 Let X be a topological spaces and let f, g : [0, 1]→ x be paths in X with the
same initial point x0 and end point x1. We say that f is path-homotopic to g, if there exists a
continuous map H : [0, 1]2 → X such that

H(s, 0) = f(s) and H(s, 1) = g(s)

H(0, t) = x0 and H(1, t) = x1

for each s, t ∈ [0, 1]. We call H a path-homotopy between f and g and write f ∼ g.

Remark: ∼ is an equivalence relation. This is easy to check by giving simple path-homotopies
between arbitrary paths. We denote the path-homotopy class of a path γ by [γ].

Definition 1.4.2 Let γ0 be a path in a topological space X from x0 to x1 and γ1 a path in X
from x1 to x2. We define the product between γ0 and γ1 to be

γ0 ? γ1 =

{
γ0(2s) for s ∈ [0, 1

2 ],
γ1(2s− 1) for s ∈ (1

2 , 1].

This is well-defined and continuous, since γ0(1) = x1 = γ1(0) and therefore a path from x0 to x1.

Lemma 1.4.3 The operation ? is associative and induces a well-defined operation on path-
homotopy classes, if f(1) = g(0):

[f ] ? [g] = [f ? g]

Furthermore, any path-homotopy class [γ] of paths from x0 to x1 has a left- and right identity
element [ex0 ] respectively [ex1 ], where ex is the constant path ex(t) = x for all t ∈ [0, 1], such that
[ex0 ] ? [γ] = [γ] = [γ] ? [ex1 ] and induces the reverse of γ, denoted by γ, with γ(s) = γ(1− s), such
that

[γ] ? [γ] = [ex0 ] and [γ] ? [γ] = [ex1 ]

Therefore, one might argue that [γ] can be called the inverse of [γ].

Proof For the proof, the interested reader is referenced to Munkres’ Topology, [2], pages 327ff.

Definition 1.4.4 Let X be a topological space and x0 ∈ X. A path in X that begins and ends
in x0 is called a loop based at x0. The set of path-homotopy classes based at x0 together with
the operation ? is called the fundamental group of X relative to the base point x0 and we denote
it by π1(X,x0).

Proposition 1.4.5 The fundamental group π1(X,x0) is actually a group.

Proof By Lemma 1.4.3 we know that the group operation ? is well-defined, since the starting
point of any loop is equal to the end-point. In addition, there exists a unique identity element
[ex0 ], associativity holds and for each class of loops [γ] there is a unique inverse element [γ]. �

Definition 1.4.6 Let X and Y be topological spaces, x0 ∈ X, y0 ∈ Y and h : X → Y a
continuous map such that h(x0) = y0. We define h? : π1(X,x0)→ π1(Y, y0) by

h?([γ]) = [h ◦ γ]

and call h? the homomorphism induced by h.
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Theorem 1.4.7 Let h : X → Y and k : Y → Z be continuous maps such that h(x0) = y0 and
k(y0) = z0 for some x0 ∈ X, y0 ∈ Y and z0 ∈ Z. Then (k ◦ h) = k? ◦ h?. If idX is the identity
map on X, then idX? is the identity homomorphism.

Proof By definition 1.4.6 for a path γ in X it holds that

(k ◦ h)?([γ]) = [(k ◦ h) ◦ γ] = [k ◦ (h ◦ γ)] = k?([h ◦ γ]) = (k? ◦ h?)([γ]).

Similarly, we show that idX?([γ]) = [idX ◦ γ] = [γ] �

Corollary If h : X → Y is a homeomorphism, then h? is a group-isomorphism of π1(X,x0) and
π1(Y, y0).

Proof Let g : Y → X be the inverse of h. It then holds that

h? ◦ g? = (h ◦ g)? = idY and g? ◦ h? = (g ◦ h)? = idX

and thus, h? is a bijection and consequently a group-isomorphism. �

Remark: The above corollary implies that, in a path-connected space X, the fundamental
group π1(X,x0) is independent of the base point x0 ∈ X. In such a case, we can speak of the
fundamental group of X and denote it by π1(X).

1.5 Covering Spaces

Definition 1.5.1 Let E and X be topological spaces and p : E → X a continuous, surjective
map. Suppose for each x ∈ X there is an open neighborhood Ux ⊂ X such that p−1(Ux) is a union
of some disjoint open Vα ⊂ E, where the restriction p

∣∣
Vα

: Vα → Ux defines a homeomorphism
for each α. Then, we call E a covering space of X and p the associated covering map. This pair
will be referred to as the covering space (E, p).
We call it a finite covering, if for each x ∈ X the preimage p−1(x) contains only finitely many
elements.

We can imagine the notion of covering spaces over any of the above described neighborhoods
U to be a disjoint union of “topological copies” of U that are all mapped homeomorphically onto
U by p. This is displayed in figure 1.1.

Figure 1.1: Respresentation of an even covering of the open set U 1

Definition 1.5.2 A path-connected topological space X is called simply connected, if any path
between two points in X can be continuously transformed into any other between the end points
in X.

1https://en.wikipedia.org/wiki/Covering_space
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Proposition 1.5.3 Let X be a path-connected topological space. Then X is simply connected if
and only if it has trivial fundamental group.

Proof Let us first assume that X is simply connected and let γ : x0 ; x0 be a loop for x0 ∈ X.
Since X is simply-connected, by definition 1.5.2 that means that we can continuously transform
γ into any other loop in X, meaning that there is a path-homotopy between γ and any other loop
in X. Therefore, the fundamental group of X is trivial.

Next, let us assume X has trivial fundamental group and let γ0, γ1 : x0 ; x1 be two arbitrary
paths in X for some points x0, x1 ∈ X. They are well-defined, since X is path-connected. Then
γ0 ? γ1 : x0 ; x0 is a loop in X and consequently, using definition 1.4.4 and the fact that X is
simply connected: γ0 ? γ1 ∼ ex0 . This is why

[γ0] = [γ0 ? γ1] ? [γ1] = [ex0 ] ? [γ1] = [γ1],

implying X has trivial fundamental group. �

Definition 1.5.4 A deck transformation of a cover p : E → X of a topological space X is a
homeomorphism f : E → E such that p ◦ f = p.

Remark: The set of all deck transformations on a cover p : E → X forms a group. We denote
this group by Aut(E/X).

Definition 1.5.5 Let p : E → B be a map and let f : C → B be a continuous map. A lifting of
f is a map f̃ : C → E such that p ◦ f̃ = f . This is illustrated in the following diagram.

C E

B
f

f̃

p

Lemma 1.5.6 (The lifting Criterion, [9])
Let p : E → B be a covering. Pick e0 ∈ E and fix b0 = p(e0). Let C be a path-connected and
locally path-connected topological space and let f : C → B be a continuous map and c0 ∈ C such
that f(c0) = b0. Then a continuous lift f̃ : C → E of f such that f̃(c0) = e0 exists and is unique,
if and only if

f?(π1(C, c0)) ⊂ p?(π1(E, e0))

where f? and p? are induced homomorphisms from definition 1.4.6.

Proof First if such a lift f̃ exists, we know from definition 1.5.5 that f? = p? ◦ f̃?. Therefore,

f?(π1(C, c0)) = p?(f̃?(π1(C, c0))) ⊂ p?(π1(E, e0))

as the image of a map is always contained in its domain and we know f̃? : π1(E, e0)→ π1(C, c0).

For the other implication and uniqueness, see Glickenstein [9], propositions 7 and 8 on pages 2f.

Corollary Let p : E → B be a cover and e0 ∈ E. We set b0 = p(e0). Let γ1, γ2 : [0, 1] → B be
paths with γ1(0) = γ2(0) = b0 and γ1(1) = γ2(1) = b1 for some b1 ∈ B. Then, for every homotopy
H : [0, 1]× [0, 1]→ B between γ1 and γ2 there is a unique lifting homotopy H̃ : [0, 1]× [0, 1]→ E
such that H̃(0, 0) = e0. Since H̃ is a lift, we also have that p(H̃) = H.

Proof We observe that the rectangle [0, 1] × [0, 1] has trivial fundamental group. Hence, the
condition of lemma 1.5.6 is fulfilled and we can lift H to a unique homotopy H̃ : [0, 1]× [0, 1]→ Y
such that H̃(0, 0) = e0 and p ◦ H̃ = H. This property specifically gives us that p ◦ H̃(t, 0) = γ1(t)
and p ◦ H̃(t, 1) = γ2(t), so we define our paths γ̃1 and γ̃2 accordingly. �
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Chapter 2

Galois Categories

2.1 Definition

Definition 2.1.1 (Axioms of a Galois Category, [3] and [5])
Let C be a category and F : C → sets a covariant functor from C to the category of finite sets.
We call C a Galois Category with fundamental functor F , if the following conditions are met:

G1. There is a final object in C and the fiber product of any two objects over a third exists
in C.

G2. C has an initial object, finite coproducts exist in C, and the quotient of an object by a
finite group of automorphisms exists in C.

G3. Any morphism u ∈ Hom(C) can be written u = u′ ◦ u′′ where u′′ is an epimorphism and
u′ is a monomorphism and any monomorphism u ∈ HomC(X,Y ) is an isomorphism of X
with a direct summand of Y .

G4. The functor F maps final objects to final objects and commutes with fiber products.

G5. F commutes with finite coproducts and quotients (as above) and maps epimorphisms to
epimorphisms.

G6. If u ∈ Hom(C) and F (u) is an isomorphism, then u is an isomorphism.

Explanation: Even though we have defined all of the terms in the chapter of algebraic foun-
dations, this definition appears to be quite long. In the following, all steps will be clarified to
understand specifically what each point means in the sense that the target is the set of finite sets.
For better understanding, let us prove that the category of finite sets itself, together with the
identity functor F = idC is a Galois Category by following Lynn[3], page 10:

G1. First of all, the final object Z by definition 1.1.3 satisfies that for each object X there
is a unique morphism f : X → Z. Here, this has to be the singletons {x}, since the set of
maps from a set A into a set S has |S||A| elements. Thus, |S| = 1 is the only option. We
note that this implies that final objects are unique up to a canonical isomorphism.
We define the fiber product from definition 1.1.10 of two sets A,B over a set Z to be
A ×Z B = {(x, y) ∈ X × Y : f(x) = g(y)} with f : X → Z, g : Y → Z derived from the
definition of a pullback. This exists for any two sets A,B.

G2. The initial object A by definition 1.1.3 is for any object X there is a unique morphism
f : A→ X. However, the set of maps from A to X has cardinality |X||A|, which should be
equal to 1, and the morphism is supposed to be unique, so we find out that |A| = 0 and
therefore A = ∅.
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We define the finite coproduct of sets Xi, following definition 1.1.12, to be the usual disjoint
union

⊔
i∈I Xi and following definition 1.1.13 the quotient to be

X/G = {G ◦ x : x ∈ X} = { {g ◦ x : g ∈ G} : x ∈ X}.

G3. Epimorphisms between sets are basically surjective maps, while monomorphisms between
sets are injective functions, so let u : B → D be any map. Suppose some elements are
mapped to the same element by u and fix an equivalence relation on B with x ∼ y ⇔
u(x) = u(y). Then the quotient map u′′ = p : B → B/ ∼ is surjective and because
we factored out elements that mapped to the same element, the restriction u′ = u

∣∣
B/∼ is

injective.
Now, let u : X → Y be a monomorphism (injective function). Following definition 1.1.15,
we pick Z = Y \ u(X). The inclusion map ι : Z → Y together with u induce the disjoint
union Y = u(X)tY \u(X), which makes Y a coproduct of X and Z together with u and ι
and yields that any monomorphism u ∈ HomC(X,Y ) is an isomorphism of X with a direct
summand of Y .

G4. Since F is the identity functor sets → sets, obviously final objects are mapped to final
objects and F (X ×Z Y ) = idC({(x, y) : f(x) = g(y)}) = X ×Z Y = F (X)×F (Z) F (Y ).

G5. For the finite coproduct we get F (XtY ) = XtY = F (X)tF (Y ). Since an epimorphism
by the identity functor is mapped to itself, it stays an epimorphism. The quotient yields:

F (X/G) = {{g ◦ x : g ∈ G} : x ∈ X} = {{g ◦ x : g ∈ F (G)} : x ∈ F (X)} = F (X)/F (G)

G6. F maps isomorphisms to itself and therefore G6 also holds.

As we have shown that all axioms of a Galois category hold, this implies that the set of finite
sets sets is itself a Galois category with fundamental functor idsets.

Definition 2.1.2 A category C is called essentially small, if it is equivalent to a category, whose
objects form a set.

Proposition 2.1.3 Any essentially small Galois category is equivalent to the category of finite
π-sets for a uniquely determined profinite group π.

Proof Our immediate action will be to recall that a π-set by definition 1.2.6 is nothing but a
set, on which π acts and that an essentially small category was defined in 2.1.2. This proposition
is proven in Lentra, [5, sections 3.3 - 3.5 and 3.11 - 3.19], pages 39f., in great detail and would go
beyond the scope of this thesis. �

2.2 Infinite Galois Theory

Remember that an algebraic field extension E/F is called an Galois extension, if it is both
separable and normal, both terms derived from definition 1.3.6. This, on the other hand, means
that each irreducible polynomial f ∈ F [X] having a root in E has deg(f) distinct roots in E.
In section 1.3 we assumed the field extensions to be finite but we can now easily extend the above
definition for Galois extensions to infinite field extensions, opening up a whole new field of study.
This brings us to the following definition:

Definition 2.2.1 Let k be some field. Its algebraic closure k is an algebraic field extension such
that

k = {α : f(α) = 0 for some f ∈ k[X]}.
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Its separable closure ksep is a subfield of k and can be defined as

ksep = {α ∈ k : mα ∈ k[X] has distinct roots in k}

where mα is the minimal polynomial of α from definition 1.3.4. It is also a field extension of k.

Let α ∈ ksep and let mα ∈ k[X] be its minimal polynomial from definition 1.3.4. Since k is
normal over k by the above definition, mα splits in k. We write

mα(x) =

n∏
i=1

(x− ai)

By the above definition, we know that all roots are distinct, since α ∈ ksep. Since they have
the same minimal polynomial, they necessarily also have to be in ksep which implies that ksep is
normal over k and therefore Galois. Therefore the below definition is justified.

Definition 2.2.2 The Galois group of the field extension ksep/k is called the absolute Galois
Group of k and is denoted by Gal(k) = Gal(ksep/k).

Lemma 2.2.3 If Ω is a Galois extension of F , it is Galois over every intermediate field M .

Proof We already proved this for finite Galois extensions in 1.3.9. Now, assume the inclusions
F ⊂ M and M ⊂ Ω are proper and let f ∈ M [X] be an irreducible polynomial with a root α1

in Ω. This means that f(x) = (x − α1) · g(x), where g(x) is irreducible over M [X]. Suppose
g(α1) = 0, then α1 would be a double zero in M sep ⊃ F sep ⊃ E and therefore M sep is not Galois
over M which is a contradiction. Therefore all roots of f are distinct. Now, let α1, . . . , αn be all
roots of f and let mα1 , . . . ,mαn be their minimal polynomials over F . Since E is Galois over F ,
the minimal polynomials split in linear factors in E. Consequently, f(x) |

∏n
i=1mαi in E[X]

which, since the roots of f are distinct, means that f also splits in linear factors in E[X]. �

Proposition 2.2.4 Let k be a field, ksep its separable closure and E ⊂ ksep a subfield containing
k. The following are equivalent:

1. The extension E/k is Galois.

2. For each automorphism σ ∈ Gal(k) it holds that σ(E) ⊂ E.

Proof We begin with the proof of (2) ⇒ (1). As we know from the notion above, ksep/k is
a Galois extension. Let us assume that the inclusions from the proposition are proper, since
otherwise the proof would be trivial. Let us now pick some α ∈ E \ k. Since the field extensions
are non-trivial, we find a non-trivial element σ ∈ Gal(k) that satisfies σ(α) 6= α. This exists
due to (ksep)Gal(k) = k. The equation holds because we can apply lemma 2.2.3 in the proof of
proposition 1.3.10 to get a more general statement.

By our assumption, σ(E) ⊂ E and thus we have for the restriction σ
∣∣
E
∈ Aut(E/k) that it does

not fix α. Therefore the elements that remain fixed under the action of Aut(E/k) (definition
1.2.6) are exactly the ones in k which is equivalent to E/k being Galois by proposition 1.3.10.

Vice versa, for (1) ⇒ (2), let σ ∈ Gal(k) be an automorphisms and let α ∈ E \ k be some
element, where mα denotes its minimal polynomial. Since by assumption E/k is Galois, E must
by definition 1.3.7 contain all the other roots of mα. In turn, for being a k-automorphism, σ must
permute the roots of mα. Thus, for all elements α of E we have that σ(α) ∈ E, which implies
that σ(E) ⊂ E. �

In the following, our aim will be to construct for any Galois field extension Ω/k a Galois group
that will have similar properties to the one we already dealt with in 1.3. We will use profinite
groups to equip the Galois Group with a topology that will be called the Krull topology.
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Now, let Ω/k be a (possibly infinite) Galois extension, where Gal(Ω/k) denotes its Galois Group.
Let us pick the Galois subextensions of finite degree and let us pick group homomorphisms
φML : Gal(M/k) → Gal(L/k), if M is a field extension of L that is canonically induced by
restriction. This gives us the directed set of all finite Galois field extensions of a field k. Axiom
4 of definition 1.2.2 is met here, since by the theorem of the primitive element 1.3.8 we can write
two field extensions L and M of k as L = k(γ) and M = k(θ) for some γ, θ ∈ k, since L and M
are separable, because they are Galois. Then k(γ, θ) contains both M and L as subfields and still
is a Galois extension of finite degree, as both L and M are Galois, applying lemma 1.3.2. By the
fundamental theorem of Galois theory 1.3.9 inclusion-reversing correspondence can be given for
the Galois groups of these fields. Thus, by definition 1.2.3, the group homomorphisms, the Galois
groups of finite field extensions together with inclusion form a projective system. Its projective
limit forms a group by proposition 1.2.4 and we denote it by lim

←
Gal(L/k).

Proposition 2.2.5 The projective limit lim
←

Gal(L/k) is isomorphic to Gal(Ω/k).

Proof First, let us define a group homomorphism ψ : Gal(Ω/k) →
∏

[L:k]<∞Gal(L/k) by

mapping σ 7→ σ
∣∣
L1
× σ

∣∣
L2
× . . . for finite Galois extensions Li. Proposition 2.2.4 gives us the

fact that σ(L) ⊂ L for any of the finite Galois extensions, because every separable extension is
contained in ksep. Consequently, ψ is well-defined. This map is injective, since if σ does not fix
α ∈ Ω, then σ

∣∣
L

is not trivial for some finite field extension L of k that contains k(α) and by the
theorem of the primitive element 1.3.8 every subextension of finite degree can be written that
way. Thus, the kernel only contains the identity. By the fundamental theorem of Galois theory
1.3.9, the image of ψ is contained in the projective limit lim

←
Gal(L/k) that, by definition 1.2.3,

is a subset of the domain.
Let us now pick (σL)[L:k]<∞ ∈ lim

←
Gal(L/k). We define an automorphism σ of Ω that fixes k: For

any α ∈ Ω set σ(α) = σL(α) for some finite subextension that contains k(α). This is well-defined,
since the field extensions are compatible with each other by the above construction. Again, by
construction, this exactly maps to (σL)[L:k]<∞ and therefore, ψ is surjective, implying that it is
an isomorphism. �

Let us now leave the point of view of only picking subextensions of some fixed Galois extension.
The following corollary applies proposition 2.2.5 by building the projective limit over all finite
Galois extensions of k. All of them are necessarily contained in ksep and ksep is a Galois extension.

Corollary The projective system that includes all the finite Galois extensions of a field k has a
projective limit that is isomorphic to the absolute Galois group Gal(k) = Gal(ksep/k).

Theorem 2.2.6 (Krull’s Fundamental Theorem of Galois Theory, [4])
Let Ω be a Galois extension of k and let L be a subextension. Then Gal(Ω/L) is a closed subgroup
of Gal(Ω/k). Moreover, the maps L 7→ Gal(Ω/L) and H 7→ ΩH yield an inclusion-reversing
bijection between the sets

{L field : Ω ⊃ L ⊃ k} ←→ {H : H closed subgroup in Gal(Ω/k)}

Furthermore, a closed subgroup H is normal if and only if ΩH is Galois over k and in this case
there is a natural isomorphism Gal(ΩH/k) ∼= Gal(Ω/k) / H.

Proof First, let us show the maps given in the statement are inverse maps. For that matter,
let H be a closed subgroup of Gal(Ω/k). By lemma 2.2.3 we get that Ω is Galois over ΩH , as it
is an intermediate field. Then we get by[4, proposition 7.9], page 94, that Gal(Ω/ΩH) = H.

Otherwise, let L be a subextension. Gal(Ω/L) is a profinite group itself, but in this case only
using finite Galois field extensions of L that are by lemma 1.3.2 also finite field extensions of
k. Therefore, it is a subgroup of Gal(Ω/k). Then, by the version of proposition 1.3.10 for
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infinite Galois extensions that is proved by applying lemma 2.2.3, we know that ΩGal(Ω/L) = L.
Furthermore, the group Gal(Ω/L) is closed in Gal(Ω, k) by [4,proposition 7.11(a)], pages 94f.

The proof of the last statement can be found in Szamuely, [1], pages 95f. �

Example: Notice the difference to the fundamental theorem of finite Galois theory: In this case,
not every subgroup of Gal(E/F ) is considered, but only the closed ones. If we consider the groups
Z/pZ for primes p ≥ 2, using example [Ẑ] and proposition 2.2.5, its absolute Galois group is Ẑ.
This implies, again by example [Ẑ], that it contains a non-closed subgroup, namely a copy of Z,
proving that not all subgroups of the Galois group are necessarily closed.

2.3 Finite Étale Algebras

Definition 2.3.1 Let k be a field and let A be a k-algebra, meaning that A is a ring with 1
together with a ring homomorphism ψA : k → A such that ψA(1k) = 1A and for all x, y ∈ im(ψA)
it holds that xy = yx.
The k-algebra A is called étale, if it is isomorphic to a finite product of separable extensions of
k. When all these extensions have finite degree over k, it is said to be finite étale.

Now, let kSAlg denote the category of finite étale algebras. The morphisms between two
objects A,B ∈ ob(kSAlg) are k-algebra homomorphisms φ : A → B, i.e. a ring homomorphisms
such that for all x ∈ k and a ∈ A it holds that φ(xa) = xφ(a).

Then, let us denote the opposite category of kSAlg by Ck = kSAlg
op. In the following, we will show

that this is a Galois category together with the fundamental functor Fk = Hom
kSAlg(−, k), where

k denotes a fixed algebraic closure. This sends a k-algebra A to the k-algebra homomorphisms
from A into k. Since we only deal with finite étale algebras, this set is clearly finite.

Let us now prove that the category Ck is a Galois category. However, before doing that, we need
to introduce some lemmas.

Lemma 2.3.2 The functor − ⊗k B for a k-algebra B preserves and detects epimorphisms and
monomorphisms.

Proof (Sketch) A k-algebra B over a field k is a k-vector space equipped with a bilinear
product. For an epimorphism u : A→ B it suffices to choose a basis v1, . . . , vn, vn+1, . . . , vm in A
and choose from the image of these m vectors a basis (wi)

n
i=1 for B, which is possible, because u is

a surjective ring homomorphism. Then we apply this construction to the map u : A⊗kC → B⊗kC
for a k-algebra C and get that for a basis (cj)j∈J for some J of C we have that u(vi⊗cj) = wi⊗cj
for i ∈ [n] and j arbitrary. But this already generates B ⊗k C, since {wi ⊗ cj : i ∈ [n], j ∈ J} is
a basis of it, so this map is an epimorphism.
The other proofs are analogous to the above. �

Lemma 2.3.3 Let k be a field and k an algebraic closure of k. Let I be a finite set. Then

Homk(
∏
I k, k) ∼= I

Proof This isomorphism sends i ∈ I to (a1, . . . , an) 7→ ai in Homk(
∏
I k, k).

Its inverse map is for any φ ∈ Homk(
∏
I k, k) given by the map we will construct in the following.

To do that, we classify the morphisms in Homk(
∏
I k, k). First, we notice that the image of every

k is determined by the image of ei = (0, . . . , 0, 1, 0, . . . , 0), since φ(ax) = aφ(x) for all a ∈ k and
x ∈

∏
I k. Let us now assume that some ei and ej for i 6= j are mapped to a non-zero element.

Then 0 = φ((0, . . . , 0)) = φ(ei · ej) = φ(ei) · φ(ej) with the component-wise multiplication in∏
I k. The fact that k is a field implies that it contains no zero-divisors, which yields that either

φ(ei) or φ(ej) are zero. This is a contradiction, so at most one entry in
∏
I k can be mapped to
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non-trivial elements.
However, φ fixes k, since it is a k-algebra homomorphism, so it can’t be the zero-map, since {0}
is no field. This implies that all morphisms in Homk(

∏
I k, k) are given by projections in the i-th

coordinate. Subsequently, the inverse map is given by πi 7→ i. �

Lemma 2.3.4 Let A be a k-algebra for a field k. Then A ⊗k k ∼=
∏
I k for some finite set I, if

and only if A is finite étale.

Proof For the proof see Lenstra [5, proposition 2.7(iii)⇔(iv)], pages 21f. �

Finally, this gives us the necessary means to state the following proposition.

Proposition 2.3.5 The category Ck together with the fundamental functor Fk = Hom
kSAlg(−, k)

is a Galois category.

Proof Remember that by definition 2.1.1, the category Ck needs to fulfill 6 axioms to be a Galois
category. We use the definition of kSAlg and Fk from above to prove them.

G1. The final object in Ck is the initial object in kSAlg which is k. It is initial in kSAlg, since
for any object A ∈ ob(kSAlg) there is precisely one morphism φ : k → A, as we assume
that φ(x) = xφ(1k) = x · 1A for all x ∈ k. Thus, k uniquely determines every k-algebra
homomorphism with domain k.

We define the fiber product in Ck to be the coproduct in kSAlg, the tensor product: For
any two k-algebras A,B,C ∈ ob(Ck) it holds that A×C B = A⊗C B.

G2. The initial object in Ck is the final object in kSAlg. This is the null-ring {0}. Indeed,
there is a single morphism from any k-algebra A into {0} (the 0-homomorphism). Moreover,
{0} is a separable k-algebra, since it satisfies the definition, as it is the empty product.

The finite coproduct AtB of two objects A,B ∈ ob(Ck) will be defined to be the k-algebra
generated by A and B such that if A ∼= k1 × · · · × kn and B ∼= kn+1 × · · · × km, we have
A tB ∼= k1 × · · · × km. This is the product in kSAlg.

The categorial quotient A/G for a group of automorphisms G in Ck is the set of G-invariants
of A in kSAlg, namely

AG = {a ∈ A : g(a) = a for all g ∈ G}.

G3. Let u : A → B be a morphism in Ck. It factors to the epimorphism u′ : A → im(u)
with a 7→ u(a) and the monomorphism u′′ : im(u) → B with b 7→ b. Then we consider
u = u′′ ◦ u′.
What remains to be checked is that im(u) ∼= A/I for the ideal I = ker(u) is indeed a finite
étale algebra. We notice that A/I is a ring and also a k-algebra by restricting the map
ψA. Since u′ : A → A/I is an epimorphism, the map u′ : A ⊗k k → (A/I) ⊗k k is also an
epimorphism by lemma 2.3.2. By lemma 2.3.4, (A/I) ⊗k k ∼= (

∏
I k)/J for some ideal J .

We claim that every ideal J of
∏
I k is of the form

∏
I′ k for some I ′ ⊂ I. Indeed, for some

(ai)i∈I′ ∈ J with an 6= 0 for some n we have that ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ J . For that,
we simply choose (0, . . . , a−1

n , . . . 0) and multiply it with (ai)i∈I′ . The existence of a−1
n is

guaranteed, since k is a field.

This implies that J =
∏
I′ k where I ′ =

⋃
a∈J{i ∈ I : ai 6= 0}. Now clearly, this yields that

A/I ⊗k k ∼=
∏
I k/

∏
I′ k
∼=
∏
I\I′ k. Subsequently, applying lemma 2.3.4, this means that

A/I is a finite étale algebra.

We omit the rest of the proof for the sake of brevity.
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G4. Knowing that Fk(k) = Homk(k, k), as noted in G1 this set consits only of one element,
Fk maps final objects to final objects.

Furthermore, for the tensor product of some A,B ∈ ob(Ck) over C ∈ ob(Ck) it holds that:

Fk(A⊗C B) = Homk(A⊗C B, k)

= {C-bilinear maps Ψ : A×B → k}
= {Ψ : A×B → k : Ψ(ca, b) = cΨ(a, b) = Ψ(a, cb)}
= {(α× β) ∈

(
Homk(A, k)×Homk(B, k)

)
: Fk(ψA)(α) = Fk(ψB)(β)}

= Homk(A, k)×Homk(C,k) Homk(B, k) = Fk(A)×Fk(C) Fk(A)

which implies that Fk commutes with the fiber product.

G5. We view a coproduct of two objects. Induction yields the result for greater numbers.

Fk(A×B) = Homk(A×B, k)

= Homk((A×B)⊗k k, k)

= Homk((A⊗k k)× (B ⊗k k), k)

2.3.4
= Homk(

∏
I

k ×
∏
J

k, k)

= Homk(
∏
ItJ

k, k)

2.3.3
= Homk(

∏
I

k, k) tHomk(
∏
J

k, k)

2.3.4
= Homk(A, k) tHomk(B, k) = Fk(A) t Fk(B)

Consequently, Fk commutes with finite coproducts.

The fundamental functor Φalg : kSAlg → sets that corresponds to kSAlg maps some
arbitrary morphism u : E → D to a morphism from Homk(D, k) to Homk(E, k) by taking
a k-algebra homomorphism g : D → k to Φalg(u)(g) = g ◦ u.
Now, let u : A→ B be an epimorphism in Ck. According to lemma 2.3.2, u : A⊗kk → B⊗kk
is an epimorphism. Using lemma 2.3.4, u :

∏
I k →

∏
J k is an epimorphism which yields

I to have greater cardinality than J . Consequently, we view Fk(u) : Homk(
∏
I k, k) →

Homk(
∏
J k, k). This is also an epimorphism, because I has greater cardinality than J and

we can apply lemma 2.3.3.

Finally, let A ∈ ob(Ck) be a finite étale algebra and G a group of automorphisms. Then:

Fk(A/G) = Homk(A
G, k)

= Homk(A
G ⊗k k, k)

(−)
= Homk((A⊗k k)G, k)

2.3.4
= Homk((

∏
I

k)G, k)

= Homk(
∏

I/Fk(G)

k, k)

2.3.3
= Homk(

∏
I

k, k)/Fk(G)

2.3.4
= Homk(A⊗k k, k)/Fk(G)

= Homk(A, k)/Fk(G) = Fk(A)/Fk(G)
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Here, (−) uses the fact that AG ⊗k k = (A ⊗k k)G. This is clear, after we choose a vector
space basis for AG, extend it to a basis for A, and consider the induced basis of A⊗k k.

G6. Let u : A → B be a morphism such that Fk(u) : Homk(A, k) → Homk(B, k) is an
isomorphism. Then, by the definition of the tensor product, we have that

Fk(u) : Homk(A⊗k k, k)→ Homk(B ⊗k k, k)

is also an isomorphism. This indicates that Fk(u) : Homk(
∏
I k, k)→ Homk(

∏
J k, k) is an

isomorphism by lemma 2.3.4. Thus, by lemma 2.3.3, I ∼= J .

This gives us that the morphism u :
∏
I k →

∏
J k is an isomorphism. By lemma 2.3.4,

u : A ⊗k k → B ⊗k k is an isomorphism, which implies that u : A → B is an isomorphism
by lemma 2.3.2.

This completes the proof and hence Ck is a Galois category. �

Theorem 2.3.6 Let k be a field with fixed separable closure ksep. The functor Φalg gives us
an anti-equivalence between the category of finite étale algebras kSAlg and finite sets with a
continuous left Gal(k)-action. Here, the sets are Homk(−, k).

Proof First, let us note that the category kSAlg is essentially small. Since ksep is a set, so is
T =

∏
N k

sep. This implies that the power set P(T ) of T is also a set and since ob(kSAlg) ⊂ P(T )
by definition 2.3.1, ob(kSAlg) forms a set.

Therefore, we can apply proposition 2.1.3 which makes the category Ck that now is an essentially
small Galois category by proposition 2.3.5. This gives us that kSAlg is anti-equivalent to the
category π-sets for some profinite group π. For calculating π we can use a construction from
Lenstra, [5], pages 35f., that says that π is isomorphic to Aut(Fk) = Aut(Φalg).

However, by Lenstra [5, section 3.18], pages 42f., we know that Aut(Φalg) ∼= lim
←

AutCk(A), where

A ranges over the connected Galois objects in Ck. For a connected Galois object A we know
that AAutCk (A) = k, because k is the final object in Ck. Due to theorem 2.2.6 and the fact that
AutCk(A) = Aut(A/k), we get that A/k is a Galois extension. This, in turn, implies that

π ∼= Aut(Φalg) ∼= lim
←

A conn. Gal.

AutCk(A) ∼= lim
←

L/K Galois

Gal(L/k)
2.2.5∼= Gal(k).

We will now show that the canonical left action of Gal(k) on Homk(A, k
sep) is continuous. A

group action of a profinite group π on a finite set is continuous if and only if the stabiliser of every
element is a closed subgroup of π. We also know that some σ ∈ Gal(k) stabilises a k-algebra
homomorphism φ ∈ Homk(A, k) if and only if it stabilises its image. By definition 2.3.1, A is a
product of separable fields, so the image of φ is the image of one of the fields. This is already
verified above. Subsequently, it is sufficient to show that the stabiliser in Gal(k) of any finite
sub-extension of k is closed. However, this was already proved in theorem 2.2.6, so the action of
Gal(k) on Homk(A, k

sep) is continuous. �
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Chapter 3

Covering Spaces

Following chapter 2 and the ideas of section 1.5, let us at the start of this chapter conclude that the
category of finite coverings of a connected topological space X, namely CX , is a Galois category.
Here, the the morphisms f : Y1 → Y2 between covers of X, referred to as pi : Yi → X, i ∈ {1, 2},
satisfy that f is continuous and p1 = p2 ◦ f . The corresponding fundamental functor is

Fx : CX → sets, Fx(p : Y → X) = p−1({x})

for some fixed x ∈ X. This should give us an idea of how the category of finite coverings behaves,
an introduction to its properties and help for further understanding Galois categories. For that
reason, let us prove the claim.
Claim: The category CX of finite coverings of a connected space X is a Galois Category.

Proof Recalling definition 2.1.1, we need to check six axioms for Galois categories:

G1. The trivial covering id : X → X here is a final object, as the morphisms to this object
are by the property of the identity map equal to the covering map of the object from the
domain. We define the fiber product to be

Y1 ×Z Y2 = {(y1, y2) : f(y1) = g(y2)}

for morphisms f : Y1 → Z and g : Y2 → Z with the subspace topology. We still need
to check that this is a covering of X together with the obvious restricted covering map
p1 × p2 : Y1 ×Z Y2 → X. Let U ⊂ X be an open set. Then

(p1 × p2)−1(U) =
(
p−1

1 (U)× p−1
2 (U)

)
∩ Y1 ×Z Y2

1.5.1
=

⋃
α∈I

Vα ×
⋃
β∈J

Wβ

 ∩ Y1 ×Z Y2

=
⋃

α∈I, β∈J
(Vα ×Wβ ∩ Y1 ×Z Y2),

where the last part in the paranthesis is open in the subspace topology within the product
topology and with the fact that restrictions and cartesian products are continuous opera-
tions, this yields that p1 × p2 : Y1 ×Z Y2 → X is indeed a cover.

G2. As the initial object, we can take the empty covering p : ∅ → X, which obviously satisfies
that there is a unique morphism from ∅ to any other cover.
Let us for coverings pi : Yi → X define the finite coproduct to be the disjoint union

⊔
i∈I Yi

that inherits the topology of all the spaces. This is a cover, as all the pi are covering maps
and since p

∣∣
Xi

= pi is continuous on any Xi and the Xi are disjoints, p is continuous on all
of X.
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Now, for some covering space Y of X let G ⊂ Aut(Y ) be a finite subgroup. Let us then
define the quotient Y/G = {{g(y) : g ∈ G} : y ∈ Y } together with the quotient topology
and quotient map q. The map f : Y/G→ X is surjective, as the covering map p : Y → X
and quotient map q are surjective. It is continuous as Y/G is equipped with the quotient
topology and therefore f is a restriction. Lastly, it is a covering, because for any open
U ⊂ X: ⋃

α∈I Vα = q−1(U) = p−1(f−1(U)

⇒ p
(⋃

α∈I Vα
)

=
⋃
α∈I (p(Vα)) = f−1(U)

and since p is a quotient map, we split up f−1(U) into open sets p(Vα). The homeomorphic
attribute is trivial as q is a covering map.

G3. Let u : Y1 → Y2 be a morphism. Let u′′ : Y1 → {u−1(y2) : y2 ∈ Im(u) ⊂ Y2} be
a morphism such that y1 7→ f−1(y2) for that unique y1 with y1 ∈ f−1(y2). This map is
obviously surjective and therefore an epimorphism. Then the map u′ : {u−1(y2) : y2 ∈
u(Y2)} → Y2, with S 7→ y2 if u(a) = y2 for all a ∈ S. This is injective, since we factor out
all the multiple mappings. As a result, it is a monomorphism, so we found u′ and u′′ that
satisfy u = u′ ◦ u′′.
What remains to be checked is that {u−1(y2) : y2 ∈ u(Y2)} together with the map q = p2◦u′
is indeed a covering of X, as the fact that u′ and u′′ are morphisms is obvious.
Let U ⊂ X be a sufficiently small open set from definition 1.5.1. Then it holds that

q−1(U) = u′−1 ◦ p−1
2 (U)

1.5.1
= u′−1

(⋃
α∈I

Vα

)
=
⋃
α∈I

(
u′−1(Vα)

)
and since u′ is continuous we know that u′−1(Vα) is open for each α. This means that we
can split up q−1(U) into disjoint open sets that q maps homeomorphically onto U , since
q = p2 ◦ u′ and p2 is a covering map.
Assume, f : Y1 → Y2 is a monomorphism, meaning that f is injective, continuous and
satisfies p1 = p2 ◦ f . Let us then define W = Y2 \ f(Y1) with the subspace topology. Then
W t f(Y1) = Y2, since f(Y1) ⊂ Y2, which by definition 1.1.15 makes f a direct summand.

G4. Taking into account Fx(id : X → X) = id−1({x}) = {x} and our knowledge from
chapter 2.1, the singletons are the final objects in the category sets; thus Fx maps final
objects to final objects.
For the fiber product, let (Y1, p1) and (Y2, p2) be two coverings of X. Let f : Y1 → Z and
g : Y2 → Z be two morphisms. Then, since h = p1 × p2 is a covering map:

Fx(h : Y1 ×Z Y2) = h−1({x}) = {(y1, y2) : f(y1) = g(y2) ∧ h ((y1, y2)) = x}
= {(y1, y2) : f(y1) = g(y2)} ∩ p−1

1 ({x})× p−1
2 ({x})

= p−1
1 ({x}) ×Fx(Z) p−1

2 ({x})
= Fx (p1 : Y1 → X) ×Fx(Z) Fx (p2 : Y2 → X)

which implies that the functor and the fiber product commute.

G5. We now show that it commutes with finite coproducts. Let (Xi, pi), i ∈ [n] be coverings
and I a finite set. Then

Fx(p :
⊔
i∈[n]

Xi → X) = p−1({x}) Xi disjoint
= p−1

1 ({x}) t · · · t p−1
n ({x})

= Fx(p1 : X1 → X) t · · · t Fx(pn : Xn → X).
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Now, let us show that Fx maps epimorphisms to epimorphisms. For this matter, let us
define f : Y1 → Y2 to be an epimorphism, i.e. a surjective map such that p2 ◦ f = p1. In
that case, Fx(f : p1 → p2) = f : p−1

1 ({x}) → p−1
2 ({x}), where f denotes the image of f

under Fx, clearly gives us a surjective map, since f is surjective and p1 and p2 are coverings.
Eventually, let us prove that Fx commutes with quotients. Let Y/G be a quotient and let
pG : Y/G→ X be its covering map, where p : Y → X denotes the regular covering. Then:

Fx(pG : Y/G→ X) = p−1
G ({x}) = {G(y) : pG(G(y)) = x}

= {G(y) : p(y) = x} = p−1({x})/Fx(G) = Fx(p : Y → X)/Fx(G)

where Fx(G) is in some sense a restriction of an element in G.

G6. Let u : Y1 → Y2 be a morphism and thus a continuous map with p1 = p2 ◦u. Then u, the
image of u under Fx, is the restriction of u to the fibers p−1

1 ({x}) and p−1
2 ({x}) and thus we

get the map u : p−1
1 ({x}) → p−1

2 ({x}). Let us assume that u is an isomorphism, meaning
that it is bijective. We want to show that u is bijective. From the definition of a covering,
we see that each of the sets {y ∈ X : Fy(u) bijective} and {y ∈ X : Fy(u) not bijective} is
open. Since X is connected, one of them is X and the other one is ∅, but since we assumed
that for one x ∈ X the image of u under Fx is bijective, we conclude that Fy(u) is always
bijective. As u is bijective on all of its fibers, it is bijective everywhere, which implies that
u is an isomorphism. �

Having proved this, let us proceed with various non-categorial notions about covering spaces.

3.1 Universal Cover

In this section we introduce a similar notion to the absolute Galois group that we have dealt with
in the second chapter, only this time for covering spaces. This notion will be called an universal
cover. Before being able to do so, let us recall some basic notions from topology. A topological
space X is connected, if there are no two disjoint open sets U and V such that U ∪ V = X. It is
called locally path-connected, if for every x ∈ X and every open neighborhood U of x there is an
open neighborhood V ⊂ U of x that is path-connected, i.e. where for any two points x1, x2 ∈ V
there is a path connecting them. Finally, X is called semi-locally simply connected, if every point
X has an open neighborhood U , such that any loop in U is homotopic to a constant path ex in
some point x in X. When we compare this to definition 1.5.2, we see that it is indeed different
from U being simply connected, because the contraction of the loop does not have to take place
in U . This definition seems quite unusual but we will later on observe an example that is semi-
locally simply-connected, yet not locally simply-connected.
This eventually gives us all the means to formulate the following definitions:

Definition 3.1.1 For a topological space X a covering space (X̃, q) is called a universal cover,
if it is simply-connected.

Example: The universal cover of the punctured complex plane C? is the complex plane itself.
Here, the covering map is given my the exponential function exp : C→ C?. Due to the fact that
exp is holomorphic on the entire complex plane, we can find a neighborhood U around any point
x of C? where the diameter of the preimage of U is stricly smaller than 2π. If necessary, we can
always shrink the open set U to ensure this requirement. Since exp is 2πi-periodic, the preimage
splits into an infinite amount of copies Vk that differ only in shiftings of multiples of 2πi. By the
basic fact that exp is a biholomorphism as a restriction to (−π, π), or any other open interval
with length 2π, it is a biholomorphism on each Vk which proves that it is a covering map.

The fact that C is simply-connected is trivial. The deck transformation group Aut(C/C?) contains
all the maps z 7→ z + 2πi and is thus isomorphic to Z, exactly as the fundamental group π1(C?).
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Definition 3.1.2 Let p1 : C1 → X and p2 : C2 → X be two covers of a topological space X.
If there is a homeomorphism f : C1 → C2 such that p2 ◦ f = p1, then C1 and C2 are called
equivalent.

Proposition 3.1.3 If the underlying topological space X is connected, locally path-connected and
semi-locally simply connected, then X has a universal cover.

Proof For the proof see Koch, [8], pages 1f.

Example: As most of the path-connected and locally path-connected topological spaces that we
encounter in our daily life are actually semi-locally simply-connected, let us now view an example
that is locally path-connected, path-connected, but not semi-locally simply-connected. This is
the Hawaiian Earring Group H that is defined by

H =
⋃
n∈N

Cn

where Cn = {(x, y) ∈ R2 : (x− 1/n)2 + y2 = 1/n2}.

Since all circles share the common point (0, 0) and each Cn itself is path-connected, H is path-
connected.
If we pick any point x in H\(0, 0), let Ux be any neighborhood of x. We know that x lies on some
Cn. Thus we can find a sufficiently small ball around x that does not intersect with any other
Cm with m 6= n and is contained in Ux. Since every Ck is path-connected, H \ (0, 0) is locally
path-connected. Inversely, from 0, taking any neighborhood U0 in H around 0 and any point y in
U0, we know that y needs to lie on some Cn. Since every Cn is path-connected, there exists a path
from 0 to y and therefore, U0 is path-connected. This implies that H is locally-path-connected.
The figure 3.1 depicts H.

Figure 3.1: Hawaiian Earring Group 1

Since every neighborhood of 0 contains a Cn and Cn is not simply-connected, we know that
H is not semi-locally simply-connected. Obviously, the fundamental group of H is going to be
quite “wild”, but we are not going into detail here.

In fact, H has no universal cover. This we can see by assuming it had a universal cover H̃ with
covering map p : H̃ → H. We then view 0 and its lift to H̃ that we denote by x0. By definition
1.5.1 there is a neighborhood U of 0 that is evenly covered, so that p−1(U) splits into open sets
{Vα} that each Vα is mapped homeomorphically into U by p.
Let i : U → X be the inclusion map. Then for the fundamental groups, since p maps makes

U and Vα topologically equivalent, it holds that π1(Vα) ∼= π1(U)
i?→ π1(H) and the inclusion

j : Vα → H̃ gives us π1(Vα)
j?→ π1(H̃)

p?→ π1(H). These two compositions are equivalent. As H̃
is simply-connected by definition 3.1.1, p? is the zero-map and therefore, i? is the zero-map. We

1https://wildtopology.wordpress.com/2013/11/23/the-hawaiian-earring/
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can conclude that U is simply-connected that makes H semi-locally simply-connected which is a
contradiction to our assumption. Thus, H̃ has no universal cover.

Theorem 3.1.4 Let X be a connected, locally path-connected and semi-locally simply-connected
topological space with universal cover (X̃, q). Fix points x ∈ X and d ∈ X̃ such that q(d) = x.
Let r : E → X be another path-connected cover and e ∈ E a point with r(e) = x. Then there
exists a unique covering map f : X̃ → E such that r ◦ f = q and f(d) = e. In other words, the
universal cover covers any other cover.

Proof First off, by proposition 3.1.3 the universal cover of X exists and let us call it p : X̃ → X.
Let r : E → X be some other connected cover. By proposition 1.5.3 and the fact that the
cover is path-connected, for the fundamental group of X̃ it holds that π1(X̃) = {0}. Then
p?(π1(X̃)) = {0}, because p? is a homomorphism. Hence, the condition of the Lifting criterion
1.5.6 is fulfilled and we can lift p : X̃ → X to a unique continuous map f : X̃ → E, such that
r ◦ f = p and f(d) = e.

We still need to show that f is surjective and fulfills definition 1.5.1 for being a covering map. For
that, we introduce the below commutative diagram that will help us understand the following.

E

X̃

X

f

r

q

Let x̃0 ∈ X̃. We set e0 = f(x̃0) and x0 = q(x0) and pick a path α̃ : e0 ; e in E for some
e ∈ E. Then α = r ◦ α̃ is a path in X beginning at x0 and ˜̃α a lifting of α̃ that begins at x̃0. By
proposition 1.5.6 we get that f ◦ ˜̃α is a lifting to E and due to uniqueness this also yields that
α̃ = f ◦ ˜̃α. Moreover, f maps the end point of ˜̃α to e which shows that for any choice of e ∈ E
we can find x̃ ∈ X̃ such that f(x̃) = e, implying surjectivity.
Let us show that f is also a covering map. Given e ∈ E we set x = r(e). Because q and r are
both covering maps and X is path-connected, there is a path-connected open neighborhood Ux
of x for which it holds that

q−1(Ux) =
⋃
α

Vα ⊂ X̃ and r−1(Ux) =
⋃
β

Wβ ⊂ E

with q : Vα
∼→ Ux and r : Wβ

∼→ Ux

homeomorphically. Then pick W ∈ {Wβ} with e ∈W . Since q is a restricted homeomorphism and
Ux is connected, because X is locally path-connected by assumption, every single Vα is connected
and thus the image f(Vα) is also connected, since f is continuous. As each slice Vα is mapped into
r−1(Ux) and they are connected, they are mapped into a single slice Wβ. Now, we pick all the Vα
that f maps into our fixed W from above and we denote this set by {Vi}. Then f−1(W ) =

⋃
i Vi.

It remains to be shown that those Vi are mapped homeomorphically into W , but this is clear:
the restrictions q

∣∣
Vi

: Vi → Ux and r
∣∣
W

: W → Ux are both homeomorphisms by assumption and

so the composition f
∣∣
Vi

= r
∣∣
W

−1 ◦ q
∣∣
Vi

is also a homeomorphism. Eventually, this proves the
theorem because f is a covering map. �

Corollary The universal cover is unique up to equivalence of covering spaces, if it exists. Picking
one representative of the equivalence class enables us to speak of the universal cover of X and we
denote it by X̃.

Proof Let q1 : X̃1 → X and q2 : X̃2 → X be universal covers. Fix two arbitrary points c ∈ X̃1

and d ∈ X̃2 that are both mapped to some x ∈ X by q1 or q2 respectively. By theorem 3.1.4 they
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cover each other, since they both are universal covers of X, so we get the following commutative
diagram:

X̃1 X̃2

X

p1

p2

q1 q2

Here, p1 also satisfies p1(c) = d and p2 satisfies p2(d) = c by theorem 3.1.4. Since by the above
diagram we have q1 ◦ p2 ◦ p1 = q2 ◦ p1 = q1 and q2 ◦ p1 ◦ p2 = q1 ◦ p2 = q2, this implies that the
following diagrams

X̃1 X̃1

X

X̃2 X̃2

X

and

id

p2 ◦ p1

q1 q1

id

p1 ◦ p2

q2 q2

commute. Furthermore, p2 ◦ p1 is a lifting of q1 with p2 ◦ p1(c) = c. This means by lemma 1.5.6
that it is unique. Since idX̃1

is another lifting of q1 such that idX̃1
(c) = c, the uniqueness of a

lifting gives us that p2 ◦ p1 = idX̃1
.

A similar argument yields that p1 ◦ p2 = idX̃2
. Since p1 and p2 are continuous, this implies that

p1 ◦ p2 is a homeomorphism that is compatible with q2. Thus, by definition 3.1.2, we know that
X̃1 and X̃2 are equivalent. �

Example: Let us now, at the end of this chapter, show that the condition “semi-locally simply-
connected” that seems quite arbitrary, is actually necessary and cannot be replaced by the condi-
tion “locally simply-connected”, which means that around each point and each neighborhood of
this point we can find a simply-connected neighborhood. The example here will be the cone that
arises from the Hawaiian Earring Group H that we viewed earlier. This surface is the image of

c : H× [0, 1]→ R3, c(x, y, t) = ((1− t)x, (1− t)y, t)

and roughly like it is depicted in figure 3.2:

Figure 3.2: The cone of the Hawaiian Earring Group H
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This cone is obviously simply-connected and hence semi-locally simply-connected, since we
can contract each path on it to the critical point (0, 0, 1). However, choosing a sufficiently small
neighborhood around the point (0, 0, 0), there is always an entire circle of H contained in this
neighborhood. Thus, this neighborhood is not simply-connected. This eventually implies that
the cone over the Hawaiian Earring is not locally simply-connected.

3.2 Coverings with marked points

Definition 3.2.1 Let p : Y → X be a cover such that p(y0) = x0 for some points. We then
call it a covering with marked points and denote it by p : (Y, y0) → (X,x0). For doing so, let
us introduce a new definition. Two coverings with marked points p1 : (Y, y0) → (X,x0) and
p2 : (Z, z0)→ (X,x0) are called equivalent, if there exists a homeomorphism f : Y → Z such that
p1 = p2 ◦ f and f(y0) = z0.

A covering with marked points p : (Y, y0) → (X,x0) defines the induced homomorphism
p? : π1(Y, y0) → π1(X,x0) from definition 1.4.6. The following proposition further specifies this
corellation.

Proposition 3.2.2 If p : (Y, y0) → (X,x0) is a covering with marked points, then the induced
group homomorphism p? : π1(Y, y0)→ π1(X,x0) is injective.

Proof We show that the kernel of p? is trivial. For that matter, let ex0 be the constant path in
π1(X,x0). Let γ be a loop in π1(Y, y0), whose equivalence class is mapped to ex0 . We show that
it is homotopic to ey0 . Let us use the corollary of lemma 1.5.5. We define a homotopy H between
p ◦ γ and ex0 . If H̃ is a lifting of H to Y such that H̃(0, 0) = y0, then H̃ is a path homotopy
between γ and the constant loop ey0 . �

This notion implies that, since the image of a group under a group-homomorphism is a
subgroup of the codomain, every covering with marked points correlates with a subgroup of the
fundamental group π1(X,x0). The following theorem gives rise to this:

Theorem 3.2.3 (On the classification of coverings with marked points, [6])
For every subgroup G of the fundamental group π1(X,x0) of a space X there exists a connected
covering with marked points p : (Y, y0)→ (X,x0) such that p?(π1(Y, y0)) = G.

Proof For the proof of this theorem I refer to Khovanskii, [6], page 44.

Lemma 3.2.4 Path-connected coverings with marked points of a space X are equivalent as cov-
erings, if and only if the subgroups corresponding to these coverings are conjugate in π1(X,x0).

Proof Let p1 : (Y, y0) → (X,x0) and p2 : (Z, z0) → (X,x0) be equivalent as coverings. This
means that there exists a homeomorphism h : Y → Z such that p1 = p2 ◦ h. This implies that h
necessarily maps the fiber p−1

1 (x0) to p−1
2 (x0) which, in turn, implies that p1 : (Y, y0) → (X,x0)

is equivalent to p2 : (Z, h(y0)) → (X,x0) as a covering with marked points. This also gives us
that p2(h(y0)) = p2(z0) = x0. Now, let γ̃ be a path in Y that starts at z0 and ends at h(y0). This
is possible, since Y is path-connected by assumption. For this path, it holds that p ◦ γ̃ = γ is a
loop that starts at x0 and ends at x0.

Let us define G1 to be the subgroup of π1(X,x0) that consists of the paths, whose lifts to Z start
and end at h(y0).
Now, given a path δ ∈ p2?(π1(Z, z0)), we know that the lift of γ ? δ ? γ starts and ends at
h(y0) and thus it is in G1. For the other inclusion, we have that γ ? η ? γ is in p2?(Z, z0) for
some η ∈ G1, since its lift starts and ends at z0. Therefore, if G = p2?(π1(Z, z0)), we know
that γ ? G ? γ = G1 which means exactly that G and G1 are conjugate. This completes the
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first implication, since h is a homeomorphism between covers with marked points and therefore
p1?(π1(Y, y0)) = p2?(π1(Z, h(y0))).

For the second implication, if the corresponding subgroups are conjugate in π1(X,x0), there exists
a homeomorphism with marked points between (Z, z0) and (Y, a0) for some point a0 ∈ p−1

1 (x0)
that is potentially different from y0. But with the argument from above, (Y, a0) and (Y, y0) are
equivalent as covering spaces. �

This lemma gives us the following interpretation: Connected covers p : Y → X of a connected,
locally path-connected and semi-locally simply connected space X are classified by the subgroups
of the fundamental group π1(X,x0) that are defined up to conjugation in the group π1(X).
Now, in Galois theory, we normally view algebraic field extensions that are subordinate to a
given Galois extension and compare them to the subgroups of the Galois group. For that matter,
compare 2.2.6. To do something similar here, let us introduce new notions.

Definition 3.2.5 We say that a covering with marked points p2 : (Y2, y2) → (X,x0) is subordi-
nate to a cover p1 : (Y1, y1) → (X,x0), if there is a morphism h : (Y1, y1) → (Y2, y2) such that
p1 = p2 ◦ h. We call a connected cover p : (Y, y0)→ (X,x0) normal, if it corresponds to a normal
subgroup of the fundamental group π1(X,x0).

Lemma 3.2.6 For a normal subgroup H of π1(X,x0) the group of deck transformations of the
corresponding normal covering p : Y → X is isomorphic to the group π1(X,x0)/H.

Proof Following Khovanskii, [6], we know that if a deck transformation takes y0 to y′0, then
it is unique, because the set on which two deck transformations coincide is open, since p is a
local homeomorphism as a covering map, it is closed, since its complement {y : σ1(y) 6= σ2(y)} is
open by the definition of a covering map and the fact that deck transformations permute fibers.
Finally, it is non-empty, because we know that y0 is in this set. Since Y is connected that means
that those deck transformations coincide on all of Y .
Now, the fundamental group π1(X,x0) acts by product from the right (compare definitions 1.4.2
and 1.2.6) on the set Ω(X,x0) of all paths starting at x0 modulo the equivalence relation, where
two paths are equivalent if and only if they end at the same point. This makes us view the space
of orbits under the action of the normal subgroup H ⊂ π1(X,x0) on Ω(X,x0), and denote it by
ΩH(X,x0) = {γ ?H : γ ∈ Ω(X,x0)} and also multiply it from the right with π1(X,x0). Now, the
equivalence class x ? H is sent to x ? H ? γ via multiplication with γ ∈ π1(X,x0). This is equal
to x ? γ ? H, since H is normal. Using the projection f : ΩH(X,x0) → (X,x0) that assigns to
each path the point it terminates, we see that it is compatible with the action of the fundamental
group on ΩH(X,x0), so the fundamental group acts on the space Y via deck transformations.
Assuming Y is the covering that corresponds to the normal subgroup H of π1(X,x0), this gives
us that H is the kernel of this action and therefore Aut(Y/X) ∼= π1(X,x0)/H. �

Theorem 3.2.7 Let p : (Y, y0)→ (X,x0) be a normal covering. There is a bijection

{(M,m0) : (M,m0) is a subordinate connected covering} ∼←→ {H : H subgroup of Aut(Y/X)}

Furthermore, a subordinate covering (M,m0) of X is normal if and only if it corresponds to a
normal subgroup H of Aut(Y/X). It then holds that Aut(M/X) = Aut(Y/X)/H.

Proof Let N = π1(X,x0)/H be the deck transformation group that corresponds to the normal
cover induced by the normal subgroup H. Let f : (M,m0) → (X,x0) be a subordinate covering
and G the corresponding image f?(π1(M,m0)) in π1(X,x0). With this, we associate the subgroup
of the deck transformation group N that is equal to the image of G under the quotient group
homomorphism π1(X,x0)→ N = π1(X,x0)/H.

Since for a chain of subordinate covers Y
q→ . . .

pn+1→ Mn
pn→ . . .

p2→M1
p1→ X it holds that

p1? ◦ · · · ◦ q?(π1(Y, y0)) ⊂ · · · ⊂ p1? ◦ · · · ◦ pn?(π1(M,m0)) ⊂ · · · ⊂ π1(X,x0)

28



we have that this map is bijective.

For the second part, a subordinate cover is normal by definition 3.2.5, if it corresponds to a normal
subgroup L of π1(X,x0). Then, in turn, by the above construction, π1(X,x0)/L is a subgroup of
Aut(Y/X) = π1(X,x0)/H. It is normal, since H is normal in L. With the group homomorphism
Aut(Y/X) → Aut(M/X), σ 7→ p ◦ σ, where p : Y → M is the morphism from definition 3.2.5,
we see that the H from the construction above is the kernel of this map and therefore we have
that Aut(M/X) ∼= Aut(Y/X)/H. �

Comparing this result to the fundamental theorem of Galois theory by Krull (theorem 2.2.6),
gives the impression that the fundamental group and the Galois group are closely related, though
one may not be able to understand why. In chapter 4, we will see a specific example and compare
the two entities.

Lemma 3.2.8 Let X be a path-connected, locally path-connected and furthermore a semi-locally
simply-connected topological space. Then the universal covering X̃ is a normal covering of X.

Proof We note that {ex0} is a normal subgroup of π1(X,x0) and that X̃ corresponds to {ex0},
since it is simply-connected. Therefore, it is a normal covering of X. �

Corollary Let X be a path-connected, locally path-connected and semi-locally simply-connected
topological space. Then there is an inclusion-reversing bijective correspondence between subgroups
of π1(X,x0) and connected coverings of X.

Proof Since X̃ is simply-connected, its fundamental group corresponds to the trivial fundamen-
tal group in π1(X,x0). By Lemma 3.2.8 we get that q : X̃ → X is a normal covering. Those two
properties of X̃ together enable us to apply theorem 3.2.7, so that there is a bijective correspon-
dence between subgroups of the group of deck transformations Aut(X̃/X) and the subordinate
coverings of X̃. However, by the construction above, any deck transformation group is isomorphic
to a quotient of π1(X,x0) by a normal subgroup. Since the subgroups of Aut(X̃/X) are induced
by restrictions of its elements, there is a one-to-one correspondence between the subordinate
coverings of X̃ and the subgroups of π1(X,x0). �

3.3 The profinite completion of the Fundamental Group

Let pi : Yi → X be a normal finite covering of a path-connected, locally path-connected and semi-
locally simply-connected space X. Let X̃ be its universal cover that exists by proposition 3.1.3.
The partially ordered set is induced by i � j ⇔ pj : Yj → X is a subordinate covering of pi :
Yi → X, because then Aut(Yi/X) ⊃ Aut(Yj/X). By definition 1.2.3, this is a projective system
with projective limit π̂1 = lim

←
Aut(Yi/X) which, by proposition 1.2.4 is a profinite group equipped

with the subspace topology as a subset of
∏
iAut(Yi/X).

By lemma 3.2.6, Aut(Yi/X) ∼= π1(X)/H for the normal subgroup H of π1(X) that corresponds
to the normal finite covering pi : Yi → X. Here, H has finite index, because pi is a finite covering.
This makes π̂1 the profinite completion of π1(X) and justifies the name.

Using a remark from chapter 1.2, there is a natural group homomorphism µ : π1(X) → π̂1 that
satisfies the following property: for each profinite group H and for any group homomorphism
f : π1(X)→ H there is a continuous group homomorphism g : π̂1 → H such that f = g ◦ µ.

Proposition 3.3.1 The image im(µ) of π1(X) is a dense subset of π̂1.

Proof Let U ⊂ π̂1 be a non-empty open set. By the product topology of sets with the discrete
topology and the subspace topology we get that U =

∏
N UN ∩ π̂1, where UN is equal to π1(X)/N

for all but finitely many UN . Without loss of generality, we assume that there exist proper subsets
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UN , otherwise there is nothing to prove.

Accordingly, let us denote N1, . . . , Nm the normal subgroups of finite index, where we have
UNi 6= π1(X)/Ni. We define M =

⋂
iNi which is also a normal subgroup of finite index. Let

us now view the canonical group homomorphisms µMNi : π1(X)/M � π1(X)/Ni that are well
defined, since M ⊂ Ni and are induced by definition 1.2.3 of the projective system that we view
here. Consequently, we define Vi = µ−1

MNi
(UNi) ⊂ π1(X)/M .

By assumption, there exists (xN ) ∈
∏
N UN ∩ π̂1 indicating that V =

⋂
i Vi is not empty because

for the (xN ) from above we have that µMNi satisfies µMNi(xM ) = xNi . Thus, xM ∈ V , because
µ−1
MNi

(xNi) ⊂ Vi contains xM for all i. Then, using the quotient map pM : π1(X) � π1(X)/M , if
we pick γ ∈ V such that p(γ) ∈ V , we get that µ(γ) ∈

∏
N UN ∩ π̂1, using µ : π1(X) → π̂1 from

the proposition. Therefore, im(µ) is a dense subset of π̂1. �

This, at least, puts π̂1 in a context with π1(X). We now know that the closure of im(µ) is π̂1,
since it is a dense subset.

In the following, we will try to identify the profinite groups π̃1 and π̃2 that make the Galois
categories Ck from proposition 2.3.5 and CX from a claim in chapter 3 π̃1-sets or respectively
π̃2-sets. This notion arises from proposition 2.1.3.

First, it is clear that CX is an essentially small category, because the fundamental group π1 is a set.
Since all subordinate coverings of the universal cover correspond to a quotient of π1, the collection
of all quotients of π1 by a normal subgroup also forms a set. As the objects of Ck correspond to
normal subgroups of finite index, it is a subset of quotients of π1 by a normal subgroup and thus
a set itself. Consequently, both categories fulfill the requirements of proposition 2.1.3 and thus
we can use it.

By a construction of Lenstra, [5], found on pages 35f., that was already used in chapter 2, we
know that π̂1 is isomorphic to lim

←
AutCX (A), where A runs over all connected Galois objects in a

suiting way. In this case, a connected Galois object corresponds to a connected normal covering,

so using the construction from the beginning of this chapter, we get that π̂1
∼= π̂1(X). This makes

CX equivalent to the category finite π̂1-sets.

Moreover, by the second chapter, Gal(k) by theorem 2.3.6 acts on Hom
kSAlg(A, k) for a finite

étale algebras A. This way, we get that the category Ck is equivalent to Gal(k)-sets, since kSAlg
is anti-equivalent to Gal(k)-sets.

This makes us compare those two entities and understand that CX and Ck are of the same form.
The only difference here is the profinite group.
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Chapter 4

Riemann Surfaces

Let us now take a look at a more concrete example that brings the mentioned concepts together,
more specifically complex manifolds. First, we are going to give definitions and prove basic
propositions. Eventually, this will yield a theorem that not only compares the fundamental
group and the Galois group, but it will even give a correspondence between them, specifically on
Riemann Surfaces.

4.1 Riemann Surfaces

Definition 4.1.1 Let X be a Hausdorff topological space. A holomorphic atlas A = {(Ui, hi)}
is made up by charts (Ui, hi), consisting of open sets Ui ⊂ X that cover X and homeomorphisms
hi : Ui → hi(Ui) ⊂ C that are holomorphically compatible in the following sense: for every i the
set hi(Ui) is open in C and for every i, j it holds that the transition maps

hj ◦ h−1
i : hi(Ui ∩ Uj)→ hj(Ui ∩ Uj)

are biholomorphic in the classic sense.

This property is displayed in figure 4.1:

Figure 4.1: The Transition Maps hj ◦ h−1
i are biholomorphic 1

Definition 4.1.2 Two atlases A and B are called equivalent, if A∪B is a holomorphic atlas. An
equivalence class of atlases is called holomorphic structure. A Riemann Surface is a Hausdorff
space X together with a holomorphic structure on X.
Furthermore, a compact Riemann surface is a Riemann surface X, such that any open cover of
X has a finite subcover.

1Klaus Lamotke, Riemannsche Flächen, page 3.
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Let us now treat an example to understand how to actually show that a topological space is
a Riemann surface.

Example: Consider the complex projective line CP 1 = C ∪ {∞} that is also called Riemann
sphere and is obtained by identifying non-zero elements in C2 that are multiples of each other.
Let us pick the charts h1 : z 7→ z on CP 1 \ {∞} and h2 : z 7→ z−1 on CP 1 \ {0}. They are
indeed holomorphically compatible, since the transition maps h1 ◦h−1

2 (z) = 1/z = h2 ◦h−1
1 (z) are

holomorphic on CP 1 \ {0,∞}. This makes it a compact Riemann surface, as it is the one-point
compactification of the Hausdorff topological space C. It is homeomorphic to the sphere S2,

Figure 4.2: Depiction of the Riemann Sphere 2

since the stereographic projection is a homeomorphism π : S2 → CP 1. This correlation is depicted
in figure 4.2 and it implies that CP 1 is both compact and connected, as S2 has these properties.

Definition 4.1.3 Let X be a Riemann surface and U ⊂ X open. The map f : U → C is called
holomorphic with respect to A, if for every chart (Vi, hi) ∈ A the function

hj(U ∩ Vj)→ C, z 7→ f ◦ h−1
j (z)

is holomorphic in the classic sense.

Remark: All the maps that are holomorphic with respect to A, form a ring O(U,A). All the
functions in O(U,A) are continuous. If we fix a holomorphic structure on X, we get for any open
set U ⊂ X the C-algebra O(U) = O(U,A), as on equivalence classes this ring does not depend
on the choice of an atlas.

Definition 4.1.4 Let X and Y be Riemann Surfaces and µ : X → Y a continuous function.
µ is called holomorphic, if for any open set U ⊂ Y and any function f ∈ O(U) it holds that
f ◦ µ ∈ O

(
µ−1(U)

)
.

Theorem 4.1.5 (Riemann’s Existence Theorem, [1])
Let X be a compact Riemann surface, x1, . . . , xn ∈ X and a1, . . . , an ∈ C. Then we can find
f ∈M(X) such that f is holomorphic at all the xi and f(xi) = ai.

Proof This theorem was taken from Szamuely, [1], page 72, and will not be proved here.

Proposition 4.1.6 If the space X is a Riemann surface, every connected covering p : D → X
inherits a canonical structure of a Riemann surface and p : D → X is a holomorphic map.

Proof Let X be a Riemann Surface and y ∈ D arbitrary but fixed. Let (U, φ) be a chart around
p(y) that exists due to 4.1.1. If necessary, we can take smaller neighborhoods U of p(y), so we are
able to assume that by p being a covering map there exists an open set V ⊂ D that is mapped
homeomorphically to U . Then (V, φ ◦ p) defines a chart around y in D. By taking all the open

2https://en.wikipedia.org/wiki/Riemann_sphere
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sets V that cover D, these charts define an atlas due to the fact that p : Vi ∩ Vj 7→ Ui ∩ Uj
homeomorphically.
For the transition maps, this gives us (φi ◦ p) ◦ (φj ◦ p)−1 = (φi ◦ p) ◦ (p−1 ◦ φ−1

j ) = φi ◦ φj . By X
being a Riemann surface, this is biholomorphic. This makes D a Riemann surface and, since by
the above equation p is locally represented by the identity, p is holomorphic, as the identity is a
holomorphism. �

4.2 Meromorphic Functions

Definition 4.2.1 S ⊂ X is called a set of isolated points, if for each x ∈ S there exists an open
neighborhood U ⊂ X of x, such that U ∩ (S \ {x}) = ∅.

Remark: If we assume X to be compact relative to the topological space it lies in, then any set
of isolated points is finite. The definition of a set of isolated points gives us a natural covering by
filling X with more open sets that do not intersect with S (X is Hausdorff). Since S is already
covered, we can use the compactness to achieve a finite subcovering. Nevertheless, S was only
covered by the opens from definition 4.2.1, so they all have to appear in this subcovering and
thus, there are only finitely many points in S.

Definition 4.2.2 Let X be a Riemann Surface. The function f from X to CP 1 = C ∪ {∞} is
called a meromorphism, if f : X \ S → C is holomorphic for some set of isolated points S. We
then call S the poles of f and denote the set of all meromorphic functions on X by M(X).

Lemma 4.2.3 If X is a connected Riemann surface, then the set of meromorphic functions
M(X) is a field.

Proof Let us first note thatM(X) is a ring together with the multiplication of functions, since
it is a subring of the functions from X to CP 1. It contains the neutral element of multiplication
and the product and sum of meromorphic functions are again meromorphic functions. It remains
to be checked that for any non-zero f ∈ M(X) it holds that the inverse 1/f is also in M(X).
For doing that, we need to show that the zeros of f form a set of isolated points. Denote this
set by S0. Assume that there was a x ∈ S0 that was no isolated point. Then it is a limit point
of S0. Let (U, φ) be a chart around x. Then f ◦ φ−1 is a holomorphic function on C and its set
of zeros contains a limit point. Then by the indentity theorem for holomorphic functions ([13],
page 122), this composition is identically 0 and so f is 0 at least in some neighborhood of x.
Consider the set of points y ∈ X, where f vanishes in a neighborhood of y. This set is open
by definition. It is closed because it contains all of its boundary points by the above argument.
Since X is connected by assumption and the set is non-empty, so f vanishes on all of X which is a
contradiction. Therefore, S0 is a set of isolated points which makes 1/f a meromorphic function,
since the set of holomorphic functions is closed under quotients on non-zero sets. �

Now this lemma gives us the opportunity to view a new arising connection between covering
spaces and field extensions, because we have the covering spaces of X and the field extensions of
M(X). By the previously developed theories, we will try to bring together these two notions.

Definition 4.2.4 Let X be a connected, compact Riemann surface. Then the non-constant
holomorphic map p : Y → X with finite fibers is a branched covering, if p : Y \ p−1(S) → X \ S
is a finite covering map for a set of isolated points S ⊂ X. Since X is compact, this means that
S is finite.

Example: Let us view the holomorphic map f : C → C with f(z) = z2. One can easily see
that this map is surjective and the preimage of every point in C? has cardinality 2. However, the
preimage of 0 only contains one element, namely 0. Hence, f is not a covering map. Nevertheless,
f is a branched covering, because it restricts to a covering map f : C? → C?.
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Definition 4.2.5 We define the degree of a finite covering to be the cardinality of its fibers.
Similarly, we can define the degree of a branched covering as the degree of the induced covering
map.

Proposition 4.2.6 Let L/M(X) be a finite algebraic field extension for a connected compact
Riemann surface X. Then there exists a compact Riemann Surface XL such that M(XL) ∼= L as
an M(X)-algebra.

Proof (Sketch) Further details are in Szamuely, [1], pages 75f.

Using the primitive element theorem 1.3.8, let γ be that primitive element for L and let mγ be the
corresponding minimal polynomial inM(X)[t]. By lemma 1.3.5, mγ is irreducible and therefore,
since mα is separable, by the euclidian algorithm we can find polynomials A and B in M(X)
such that A · mγ + B · m′γ = 1. Here m′γ denotes the derivative of mγ . We now evaluate the
coefficients of mγ at x ∈ X, where all of them are holomorphic. We let S ⊂ X be a set of isolated
points of the poles of the coefficient functions of mγ(x) together with the poles of the functions
A and B. This implies that on X ′ = X \ S, all the functions are holomorphic.
For an open subset U ⊂ X ′, let us denote the set of holomorphic functions f on U with mγ(f) = 0
by H(U). Using the theory of a locally-constant sheaf, we get a branched covering X ′L of X. We
then need to show that the corresponding Riemann surface XL is connected and compact and
find a function on it satisfying mγ(f) = 0. Finally, we prove by mapping f to γ thatM(XL) ∼= L.
�

Let Bra(X) be the category whose objects are holomorphic maps from a connected, compact
Riemann surface Y to a base Riemann surface X. By M(X)SAlg we denote the category of finite
étale algebras overM(X). Our aim will be to construct a contravariant functor from Bra(X) to

M(X)SAlg.
Assuming we are given a map φ : Y → X that is holomorphic, this induces a ring homomorphism
φ? :M(X)→M(Y ) by f 7→ f ◦φ. This is a functorial correspondence, since it takes morphisms
to morphisms and objects to objects, while preserving the identity morphisms. Let us denote this
functor by F . By construction, it is a functor that shall map into the opposite category of the
finite algebraic extensions of M(X).
We can then identifyM(X) with φ?(M(X)) which makes it a finite field extension. This will be
proved in the following. We now show that the degrees correspond.

Lemma 4.2.7 Let φ : Y → X be a non-constant holomorphic map of connected Riemann sur-
faces which has degree d as a branched cover. Every meromorphic function f ∈M(Y ) satisfies a
polynomial equation of degree d over M(X).

Proof For the proof see Szamuely, [1], pages 73f. �

Proposition 4.2.8 Let φ : Y → X be a non-constant holomorphic map of compact connected
Riemann Surfaces that has degree d as a branched covering. The induced algebraic field extension
M(Y )/φ?(M(X)) is finite and has degree d.

Proof Let us choose an arbitrary x ∈ X \ S. By definition 4.2.5 we know that it has d distinct
preimages y1, . . . , yd ∈ Y \φ−1(S). Using Riemann’s Existance Theorem 4.1.5 we know that there
exists a function f ∈ M(Y ) such that f is holomorphic on all the yi and has distinct values in
C. Using lemma 4.2.7, f satisfies a polynomial equation of degree d, but we can make it an
irreducible polynomial equation of degree n ≤ d over M(X)

φ?(an)fn + · · ·+ φ?(a1)f + φ?(a0) = 0 with ai ∈M(X).

Assuming the ai are holomorphic at x, we get that the polynomial an(x)tn+ · · ·+a0(x) ∈ C[t] has
d distinct complex roots, namely the f(yi), and therefore, using the basic property of polynomials
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that a polynomial g has at most deg(g) roots together with our assumption n ≤ d, we necessarily
get that n = d. This yields that f is an irreducible polynomial of degree d.

Now, if ai had a pole at x, it would not be holomorphic. We can easily fix that: There exists
a neighborhood of x that does not contain any points of S, as S is a set of isolated points by
definition. Since f is holomorphic and has distinct values at all the elements of φ−1(x), we can by
continuity choose another point x′, where all the ai are holomorphic and use the same argument
as before. This is possible, because S is finite, since X is compact.

Furthermore, picking any g ∈ M(Y ) we get for f as above by the theorem of the primitive
element 1.3.8 that there exists an h ∈M(Y ) such thatM(X)(f, g) =M(X)(h). Especially, this
implies that M(X)(f) ⊂ M(X)(h) ⊂ M(Y ). However, by lemma 4.2.7 h should also satisfy an
irreducible polynomial equation overM(X) of degree smaller or equal to d. Therefore, the field-
inclusion from above is an equality. This means that g ∈M(X)(f) and henceM(X)(f) =M(Y ).
This implies that the field extension from the proposition has degree deg(f) = d. �

Theorem 4.2.9 Let X be a compact, connected Riemann Surface and M(X) its field of mero-
morphic functions. There exists an anti-equivalence of categories between finite field extensions
of M(X) and the branched coverings of X.

Proof First, the functor F is well-defined by proposition 4.2.8, since it shows that F indeed
maps to the category of finite algebraic field extensions. By proposition 4.2.6 we know that F is
essentially surjective. We still need to show that F is fully faithful. For a connected Riemann
surface Y with a holomorphic map φ : Y → X that by 4.2.4 is a branched covering of X. This
proof is given for finite étale algebras in Szamuely, [1], page 76, so we merely need to restrict it,
applying our definition of a branched covering.

Since F is fully faithful and essentially surjective, the categories from the theorem are anti-
equivalent by lemma 1.1.9. �

This leads us to the theorem that connects all of the chapters that were treated before on
Riemann surfaces.

Theorem 4.2.10 Let X be a connected compact Riemann surface and let X ′ = X \ S for some
set of isolated points S. Let Yi be connected compact Riemann surfaces such that there is a
holomorphic map φi : Yi → X that restricts to a covering of X ′, and such that M(Yi) is a finite
subextension of M(X)sep/M(X). We define KX′ =

⋃
i∈I im(ιi), where ιi : M(Yi) → M(X)sep

is the inclusion map. Then the field extension KX′/M(X) is Galois and we have for any x ∈ X ′:

Gal(KX′/M(X)) ∼= π̂1(X ′, x)

where π̂1(X ′, x) is the profinite completion of π1(X ′, x).

Proof For the proof see Szamuely, [1], pages 78f.

Example: Let us view the only example of a compact connected Riemann surfaces that we know
at this point and apply the above theorem to get confidence in what it means. This example is
the Riemann sphere CP 1 = C ∪ {∞}.
By basic facts of complex analysis, we know that the automorphisms of CP 1 are the Möbius
tranformations C(t) and there exists a unique Möbius transformation f ∈ C(t) that maps some
distinct fixed points x1, x2, x3 ∈ CP 1 to some other distinct fixed points z1, z2, z3 ∈ CP 1, such
that f(xi) = zi. This enables us to pick a finite set S ⊂ CP 1 of 1, 2 or 3 points in CP 1 and get
that CP 1 \ S is biholomorphic to CP 1 \ S′ for any S′ ⊂ CP 1 of the same cardinality.

In the following, we will check for |S| ∈ {1, 2, 3}, what theorem 4.2.10 says for any of them.
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|S| = 1: Let us choose the “critical point” ∞ as finite set S. Then CP 1 \ {∞} = C. Since C is
simply-connected and path-connected, it has trivial fundamental group at every point. As
the fundamental group then is finite, its profinite completion is also trivial. The theorem
shows that Gal(KC/C(t)) = {0}, implying KC = C(t). Since C is simply-connected, if a
holomorphic non-constant map Y → CP 1 is branched only at∞, then it is an isomorphism.

|S| = 2: In this case, if we choose the set S = {0,∞}, then we get C \ S = C?. With the
topological quotient map ψ : C? → S1 = {z ∈ C : |z| = 1}, z 7→ z/|z| we know that C? and
S1 have the same fundamental group. Since C? and S1 are path-connected, π1(C?) = Z. By
a previous example its profinite completion is Ẑ. Figure 4.3 portraits the universal covering
space R of S1, displayed in a suiting way.

Figure 4.3: The universal covering space of S1. 3

Moreover, each finite covering space of S1 looks similar to this: after a finite amount of
rotations, the ends are connected. Since S1 is a quotient of C?, this should give us an idea
of how the covering spaces of C? look like, assuming we know that the universal covering
space of C? is C. By theorem 4.2.10, this also means that Gal(KC?/C(t)) = Ẑ and that the
Galois group of any subextension of C(t) is isomorphic to Z/nZ for some Z.

This implies that all coverings that are branched at 0 and∞ are of the form p : CP 1 → CP 1

with t 7→ tn, since then Aut(p) = Z/nZ. Here, the automorphisms are t 7→ ξjt, where
ξ = e2πi/n and j ∈ [n].

|S| = 3: This time, let us choose S = {0, 1,∞}. The fundamental group of C \ {1,∞} is the
free group with two generators Z ? Z. Obviously, the universal cover of C \ {1,∞} is C
and the profinite completion of the fundamental group is Ẑ ? Z, so by theorem 4.2.10 the
Galois group of the collection of all field extensions of meromorphic functions that have

finite degree over C(t) and correspond to coverings of C \ {1,∞} is isomorphic to Ẑ ? Z.

3https://de.wikipedia.org/wiki/Rotationszahl
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